Public Roads
 JOURNALOFHIGHWAYRESEARCH

DUBLISHEDBY THEBUREAU OF 'UBLIC ROADS,
J. S. DEPARTMENT OF COMMERCE, WASHINGTON

Grade separation on access road to Andrews Air Field, Maryland

Public Roads

A JOURNALOF HIGHWAY RESEARCH
Vol. 26, No. 4
October 1950
Published Bimonthly

BUREAU OF PUBLIC ROADS Washington $25, \mathrm{D}$. C.

Regional Headquarters
180 New Montgomery St.
San Francisco 5, Calif.

DIVISION OFFICES

No. 1. 718 Standard Bldg., Albany 7, N. Y. Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Rhode Island, and Vermont.

No. 2. 2034 Alcott Hall, Washington 25, D. C.
Delaware, District of Columbia, Maryland, Ohio, Pennsylvania, Virginia, and West Virginia.
No. 3. 504 Atlanta National Bldg., Atlanta 3, Ga. Alabama, Florida, Georgia, Mississippi, North Carolina, South Carolina, and Tennessee.

No. 4. South Chicago Post Office, Chicago 17, Ill. Illinois, Indiana, Kentucky, and Michigan.

No. 5. (North). Main Post Office, St. Paul 1, Minn.
Minnesota, North Dakota, South Dakota, and Wisconsin.

No. 5. (South). Fidelity Bldg., Kansas City 6, Mo. Iowa, Kansas, Missouri, and Nebraska.

No. 6. 502 U. S. Courthouse, Fort Worth 2, Tex Arkansas, Louisiana, Oklahoma, and Texas.

No. 7. 180 New Montgomery St., San Francisco 5, Calif.
Arizona, California, Nevada, and Hawaii.
No. 8. 753 Morgan Bldg., Portland 8, Oreg.
Idaho, Montana, Oregon, and Washington.
No. 9. 254 New Customhouse, Denver 2, Colo. Colorado, New Mexico, Utah, and Wyoming.
No. 10. Federal Bldg., Juneau, Alaska. Alaska.

Public Roads is sold by the Superintendent of Documents, Government Printing Office, Washington 25, D. C., at $\$ 1$ per year (foreign subscription $\$ 1.25$) or 20 cents per single copy. Free distribution is limited to public officials actually engaged in planning or constructing highways, and to instructors of highway engineering. There are no vacancies in the free list at present.

The printing of this publication has been approved by the Director of the Bureau of the Budget January 7, 1949.

BUREAU OFPUBLICROADS
U. S. DEPARTMENT OF COMMERCE

Contents of this publication
may be reprinted. Mention of source is requested.

Moment Distribution Analysis of Two-Span Arched Frames With Elastic Pier

THOMAS P. REVELISE, ${ }^{1}$ Highway Brjdge Engineer, Breau of Public Roads

INTRODUCTION

[,URING recent years multiple arches in continuous series have assumed considerimportance in the structural engineering $i \in 1$, and several methods of analysis of such tictures by moment and thrust distribution 1re been developed or proposed. ${ }^{2}$
his paper presents an adaptation of the nhod of moment distribution to the analysis If two-span arched frames with elastic eter pier and with either fixed or hinged ctings. The method is applicable to any i)-span continuous arch, but is arranged for rvenience in the analysis of arched frames i_{3} to the importance of this type in lided highway overcrossings. Detailed tulyses of an unsymmetrical structure with 1 ged footings, and of the same structure with isd footings, illustrate the procedure and silitate its use in the design office with a

Acknowledgment is made to Dudley P. Babcock and T. PWeston Jr., Highway Bridge Engineers, for checking the xputations and for many helpful suggestions and criti-
(1) Continuous Frames of Reinforced Concrete, by Hardy Ess and Newlin Morgan; John Wiley \& Sons, 1932. (2) cussion by Donald E. Larson of the paper Analysis of Gutinuous Frames by Distributing Fixed-End Moment, by E-dy Cross; p. 127, Transactions of the American Society of -il Engineers, vol. 96, 1932. (3) Analysis of Multiple thes, by Alexander Hrennikoff; p. 388, Transactions of the fierican Society of Civil Engineers, vol. 101, 1936.

During recent years multiple arches in continuous series have assumed considerable importance in the structural engineering field, and several methods of analysis of such structures by moment and thrust distribution have been developed or proposed. This article presents an adaptation of the method of moment distribution to the analysis of two-span arched frames with elastic center pier and with either fixed or hinged footings. The method is applicable to any two-span continuous arch, but is arranged particularly for convenience in the analysis of arched frames because of the increasingly frequent use of this type of structure for grade separations of divided highways.

Part I of the article is devoted to the necessary mathematical development for a structure with hinged footings, a discussion of procedure, and an actual sample analysis of an unsymmetrical two-span frame with hinged footings. In part II expressions for a structure with fixed footings are developed, followed by a discussion of procedure and a sample analysis of the same structure as that used in part I, but with footings fixed.

The use of forms for tabulating computations makes most of the analysis procedure a mechanical operation by which results can be obtained rapidly and accurately by designers of limited experience.
minimum of preliminary study of the text or reference to other sources.

Criterion for Arch Analysis

It is first desirable to establish a criterion of deck curvature in order to differentiate arched frames requiring an arch analysis from those that may be analyzed as straight frames with empirical corrections for the effect of arch action. Investigations of this subject based on the application of both methods to a number of typical structures show that when
the rise of the deck neutral axis line exceeds approximately one twenty-fifth of the design span, commonly used empirical formulas are not valid. An example of the sensitivity of frames to deck arching is the case of a single-span frame subjected to balanced earth pressure. Under this loading condition a straight frame develops negative moment at the haunch, while a frame identical in every respect except for a deck curvature exceeding the span-rise ratio of 1 to 25 develops a positive moment at the haunch.

If a structure is sufficiently arched to develop fairly pronounced arch action, failure to investigate it as an arch may result in error as to the character of the moments as well as to their magnitude. A ratio of design rise to design span of 1 to 25 is therefore recommended as the criterion that should govern the decision whether or not analysis as a true arch is necessary.

Hinged or Fixed Footings

Most bridge frames are founded on material of yielding character and are designed on the assumption of hinged conditions at the footings. The footings may be constructed integrally with the pier and abutment stems, or separated by some device such as lead plates to reduce the degree of fixity at the base.

Occasionally the structure is founded on rock. Full fixity at the footings is assumed in the design in this case since the bases of the pier and abutment stems are usually imbedded in the rock and the excavations made for that purpose are filled with concrete. It is recognized that ideal conditions of restraint are practically unattainable and that the actual condition for most structures is intermediate between hinged and fully fixed. The usual practice, nevertheless, is to base the design on either an ideal hinged condition or an ideal fixed condition, giving due consideration to the character of the foundation and type of footing to be constructed.

Design constants and forms for tabulating computations are developed in this paper for both hinged and fixed footings. In general, the variation in the two procedures is analagous to that which is encountered in the application of ordinary moment distribution to straight-framed structures having hinged and fixed members.

Part I of the paper is devoted to the necessary mathematical development for a hinged condition, a discussion of procedure, and an actual sample analysis of an unsymmetrical
two-span frame with hinged footings. In Part II expressions for a fixed condition are developed, followed by a discussion of procedure and a sample analysis of the same structure used in Part I, but with footings fixed.

Steps in the Analysis

In deriving the design constants, the frame leg and contiguous arched deck are treated as a structural unit. A load of unity is placed at 10 points on each arch, and fixed-end moments and thrusts are computed at the juncture of the deck members and pier. The fixed-end moments and thrusts are then distributed at this joint until the desired convergence is reached.

The first step of the analysis, computation of fixed-end moments and thrusts for various positions of a unit load, constitutes solution of a single-span unsymmetrical arch, fixed at the connection with the pier and either hinged or fixed at the footing. Formulas for this computation are derived from the basic elastic equations of rotation and displacement. The resultant expressions are adapted to a form for tabulating computations in which computed values of moment, M, vertical reaction, V, and horizontal thrust, H, are obtained directly - at the points of fixity for 10 positions of a unit load on each arch. No sketching of influence lines is necessary. By using unit values in the distribution procedure, only two distributions are required for symmetrical structures, and four if the structure is unsymmetrical. The necessary joint constants are evaluated from expressions derived in the computation for fixed-end moments and thrusts. It is recommended that the computations be made on a calculator, and with a degree of accuracy not less than that indicated in the sample analyses.

After the indeterminate moments and reactions are obtained, further design data may be derived in the same manner as for
statically determinate structures. This p tion of the work is subject to considera variation and is omitted in the sample analy

Tabulating Forms Used

The use of forms for tabulating compr tions renders most of the procedure mechan in nature. Experience with similar forms arch and arched-frame analysis shows t results can be obtained rapidly and accura by designers of limited experience. method is thus applicable directly, with reference to the mathematical derivations.

The analysis of two-span arches and are frames with elastic pier is especially adapted to the type of procedure illustre in the sample analyses. The various op tions are, in general, analogous to the pr dure of ordinary moment distribution, and convergence of values is rapid. In viep the comparatively limited variation in geometric characteristics of this type of st ture, it is doubtful that actual cases will or in which the conversion of the distribu cycles is retarded to an objectionable dee
Occasionally special architectural treatn of the structure, such as the addition of s facing, results in a pier of sufficient mas virtually break flexural continuity at joint. In such cases it is logical to ass fixity at the joint, and design each arch dependently.

Somewhat greater refinement in the puted values could be obtained by placing unit loads between, instead of at the eli centers of gravity. It is believed, howe that the accuracy of the method used is inconsistent with the limitations imposer uncertainties in basic assumptions and construction.

Following part II of the paper there apr a series of influence lines (figs. 13 and 14, p. showing the comparative effect of hinged fixed footings at some of the critical poin

Part I.-ANALYSIS OF STRUCTURES WITH HINGED FOOTINGS

Required Design Constants

Three structural elements are considered in the analysis, as illustrated in figure 1: Unsymmetrical arch $A B$, unsymmetrical arch $B C$, and elastic pier $B D$. The required design constants are defined as follows:

Fixed-end moment.-The moment at B due to a load P or P^{\prime}, if B were completely fixed.

Fixed-end thrust.-The thrust at A or C due to a load P or P^{\prime}, if B were completely fixed.

Moment stiffness of arch rib.-The moment at B necessary to produce a rotation of unity,

Figure 1.-Design sketch of frame.
without horizontal or vertical displacement at B.

Induced thrust of arch rib.-The thrust at A or C induced by a moment of unity at B, without horizontal or vertical displacement at B.

Thrust stiffness of arch rib.-The thrust at B necessary to produce a horizontal displacement of unity at B without vertical displacement or rotation at B.

Induced moment of arch rib.-The moment at B induced by a horizontal thrust of unity at A or C, without vertical displacement or rotation at B.

Development of Fixed-End Moment and Thrust

In figure 2 the arch rib from the hinge at the footing A to the juncture with the elastic pier and adjacent arch rib at B is treated as a single structural member, fixed at B. The term "arch rib" is used in referring to these members because of the common practice of basing barrel-arch analyses on an element 1
foot wide. This practice is followed in sample analysis. A concentrated load placed on the arch rib, inducing a fixec moment at B and equal fixed-end thrus B and A. Both the point at which the P is applied, and the horizontal distance the neutral axis of the frame leg to that F are represented as a. In usage, it wi obvious whether a represents the point of distance.

Figure 2.-Sketch for use in deriving jt end moment and thrust.

The moment from A to $a=V x-H y$. The moment from a to $B=$

$$
V x-H y-P(x-a)
$$

Letting P equal unity, the moment from a $B=V x-H y-(x-a)$
From the condition that point A is not dispiced horizontally and from the condition tat point A is not displaced vertically the flowing two elastic equations may be itten:
$\sum_{A}^{B} \frac{M x d s}{E I}($ vertical displacement $)=0_{--}(1)$
$\sum_{A}^{B} \frac{M y d s}{E I}($ horizontal displacement $)=0$
The modulus of elasticity, E, is constant the entire structure and may be eliminated m the basic equations in evaluating external ctions due to flexure. In addition, it will uplify the expressions somewhat to use a gle symbol for values of $d s / I$. Accord$; \mathrm{ly}, d s / I$ is represented by the symbol Δ.
Making these modifications, equations (1) (2) may be restated as follows:

$$
\begin{align*}
& \sum_{A}^{B} M x \Delta=0 \tag{3}\\
& \sum_{A}^{B} M y \Delta=0 \tag{4}
\end{align*}
$$

Inserting the general expression for moment o equations (3) and (4), the following are tained:

$$
\begin{align*}
& V \sum_{A}^{B} x^{2} \Delta-H \sum_{A}^{B} x y \Delta-\sum_{a}^{B}(x-a) x \Delta=0 \tag{5}\\
& V \sum_{A}^{B} x y \Delta-H \sum_{A}^{B} y^{2} \Delta-\sum_{a}^{B}(x-a) y \Delta=0 \tag{6}
\end{align*}
$$

Solving equations (5) and (6) for H and V :

$$
=\frac{\sum_{a}^{B}(x-a) x \Delta \sum_{A}^{B} x y \Delta-\sum_{a}^{B}(x-a) y \Delta \sum_{A}^{B} x^{2} \Delta}{\sum_{A}^{B} x^{2} \Delta \sum_{A}^{B} y^{2} \Delta-\left(\sum_{A}^{B} x y \Delta\right)^{2}}=\frac{\sum_{a}^{B}(x-a) x \Delta \sum_{A}^{B} y^{2} \Delta-\sum_{a}^{B}(x-a) y \Delta \sum_{A}^{B} x y \Delta}{\sum_{A}^{B} x^{2} \Delta \sum_{A}^{B} y^{2} \Delta-\left(\sum_{A}^{B} x y \Delta\right)^{2}}
$$

When x is less than a, the value of the term $(-a)$ is zero in equations (5), (6), (7), and .
The work entailed in evaluating H and V substantially reduced by a modification of uations (7) and (8). The assumption is ade that the $x \Delta$ and $y \Delta$ values represent tual loads, concentrated at the midpoints equal $d x$ divisions. Making this assumpon, the expressions

$$
\sum_{a}^{B}(x-a) x \Delta \text { and } \sum_{a}^{B}(x-a) y \Delta
$$

in equations (7) and (8) then represent the cantilever moments about point a of the $x \Delta$ loads and $y \Delta$ loads between a and B. These cantilever moments about point a may in turn be expressed as the areas of the $x \Delta$ and $y \Delta$ shear diagrams between a and B. The ordinate of the $x \Delta$ shear diagram at any load point between a and B is:

$$
\sum_{a+1}^{B} x \Delta
$$

In this expression a is any load point between the load and B. The summation is taken from $a+1$ (a plus one load point) because the $x \Delta$ concentration at point a theoretically passes through the assumed point of support and thus causes no shear.

Having developed an expression for the ordinate of the $x \Delta$ shear diagram at any load point between a and B, it is apparent that the area of the shear diagram may be expressed as the sum of the ordinates at the centers of the equal $d x$ divisions multiplied by the length of those divisions. Hence the $x \Delta$ cantilever moment and the $y \Delta$ cantilever moment expressions, in both of which a, in the first summation symbol, is the point of load, are:
$x \Delta$ cantilever moment $=\left(\sum_{a}^{B} \sum_{a+1}^{B} x \Delta\right) d x$
$y \Delta$ cantilever moment $=\left(\sum_{a}^{B} \sum_{a+1}^{B} y \Delta\right) d x$
The above expressions are equated respectively to the terms

$$
\sum_{a}^{B}(x-a) x \Delta \text { and } \sum_{a}^{B}(x-a) y \Delta
$$

and are substituted in equations (7) and (8), which now become:

$$
\begin{equation*}
H=\frac{\left(\sum_{a}^{B} \sum_{a+1}^{B} x \Delta \sum_{A}^{B} x y \Delta-\sum_{a}^{B} \sum_{a+1}^{B} y \Delta \sum_{A}^{B} x^{2} \Delta\right) d x}{\sum_{A}^{B} x^{2} \Delta \sum_{A}^{B} y^{2} \Delta-\left(\sum_{A}^{B} x y \Delta\right)^{2}} \tag{9}
\end{equation*}
$$

$V=\frac{\left(\sum_{a}^{B} \sum_{a+1}^{B} x \Delta \sum_{A}^{B} y^{2} \Delta-\sum_{a}^{B} \sum_{a+1}^{B} y \Delta \sum_{A}^{B} x y \Delta\right) d x}{\sum_{A}^{B} x^{2} \Delta \sum_{A}^{B} y^{2} \Delta-\left(\sum_{A}^{B} x y \Delta\right)^{2}}$
For temperature change:

$$
\begin{align*}
H_{T} & = \pm \frac{(\text { ETle })\left(\sum_{A}^{B} x^{2} \Delta\right)}{\sum_{A}^{B} x^{2} \Delta \sum_{A}^{B} y^{2} \Delta-\left(\sum_{A}^{B} x y \Delta\right)^{2}} \tag{11}\\
V_{T} & = \pm \frac{(\text { ETle })\left(\sum_{A}^{B} x y \Delta\right)}{\sum_{A}^{B} x^{2} \Delta \sum_{A}^{B} y^{2} \Delta-\left(\sum_{A}^{B} x y \Delta\right)^{2}} \tag{12}
\end{align*}
$$

in which

$$
\begin{aligned}
& E=\text { modulus of elasticity. } \\
& T=\text { number of degrees change in temper- } \\
& \quad \text { ature. } \\
& l=\text { design span length. } \\
& e=\text { coefficient of expansion. }
\end{aligned}
$$

It is customary to use the plus sign to designate values of H_{T} and V_{T} caused by a rise in temperature.

Equations (9), (10), (11), and (12) may now be used for evaluation of fixed-end moments and fixed-end thrusts due to concentrated loads and temperature change, as shown in the sample analysis.

Development of Arch Rib Design Constants

In figure 3 the hinge at A is assumed to be cut free, and joint B given a rotation α. Joint B is is then locked in this position and A is returned to its original position by first

Figure 3.-Sketch for use in deriving moment stiffness of arch rib.
a horizontal displacement, $h \alpha$, without vertical displacement, and then by a vertical displacement, $l \alpha$, without horizontal displacement. The moment induced at B is that which would have been induced by holding A in its original position against displacement and rotating B through the angle α. The moment stiffness of the arch rib is expressed by the $\operatorname{term} M / \alpha$ in which M is the moment at B induced by the rotation α.

The procedure is performed in two steps, as indicated in the previous paragraph. In step $1, A$ is given a horizontal displacement, $h \alpha$, without vertical displacement, and H_{1}, V_{1}, and $M_{1 B}$ are derived. In step $2, A$ is given a vertical displacement, $l \alpha$, without horizontal displacement, and H_{2}, V_{2}, and $M_{2 B}$ are derived. The final moment at B is thus $M_{1 B}+M_{2 B}$ and the final thrust is $H_{1}+H_{2}$. These correlated values may be used in obtaining the mathematical expressions for the previously defined arch rib design constants as follows:

Moment stiffness of arch rib= $\left(M_{1 B}+M_{2 B}\right) \div \alpha$
Induced thrust of arch rib=

$$
\left(H_{1}-H_{2}\right) \div\left(M_{1 B}+M_{2 B}\right)
$$

Thrust stiffness of arch rib $=H_{1}+h \alpha$
Induced moment of arch rib $=M_{1 B} \div H_{1}$
Step 1.-In deriving expressions for fixedend moment and fixed-end thrust the modulus of elasticity, E, is omitted and the recurrent

Figure 4.-Sketch for use in step 1 derivations.
term $d s / I$ is represented by the symbol Δ for convenience. The absolute expressions for moment and thrust stiffness, however, con$\operatorname{tain} E$ as a function. Therefore, the term Δ / E is used in deriving these constants.

From the condition that A is displaced horizontally a distance $h \alpha$ and from the condition that A is not displaced vertically, as shown in figure 4, the following two elastic equations may be written:

$$
\begin{align*}
& \sum_{A}^{B} M y \frac{\Delta}{E}=h \alpha_{-} \tag{18}\\
& \sum_{A}^{B} M x \frac{\Delta}{E}=0 \tag{14}
\end{align*}
$$

No sign is affixed to the displacement term, $h \alpha$, since the direction of the displacement and of the forces causing it is obvious, as noted in figure 4.

The moment at any point between A and $B=V_{1} x-H_{1} y$. Inserting the general expression for moment into equations (13) and (14) the following are obtained:

$$
\begin{align*}
& V_{1} \sum_{A}^{B} x y \frac{\Delta}{E}-H_{1} \sum_{A}^{B} y^{2} \frac{\Delta}{E}=h \alpha \ldots \tag{15}\\
& V_{1} \sum_{A}^{B} x^{2} \frac{\Delta}{E}-H_{1} \sum_{A}^{B} x y \frac{\Delta}{E}=0 \ldots \tag{16}
\end{align*}
$$

Solving equations (15) and (16) for H_{1} and V_{1} :

$$
\begin{align*}
& H_{1}=\left[\frac{h \alpha \sum_{A}^{B} x^{2} \Delta}{\left(\sum_{A}^{B} x y \Delta\right)^{2}-\sum_{A}^{B} x^{2} \Delta \sum_{A}^{B} y^{2} \Delta}\right] E_{--(17)} \tag{--}\\
& V_{1}=\left[\frac{h \alpha \sum_{A}^{B} x y \Delta}{\left(\sum_{A}^{B} x y \Delta\right)^{2}-\sum_{A}^{B} x^{2} \Delta \sum_{A}^{B} y^{2} \Delta}\right] E_{\ldots-(18)}
\end{align*}
$$

Whence:

$$
\begin{gather*}
M_{1 B}=V_{1} l-H_{1} h= \\
{\left[\frac{l\left(h \alpha \sum_{A}^{B} x y \Delta\right)-h\left(h \alpha \sum_{A}^{B} x^{2} \Delta\right)}{\left(\sum_{A}^{B} x y \Delta\right)^{2}-\sum_{A}^{B} x^{2} \Delta \sum_{A}^{B} y^{2} \Delta}\right] E_{--}} \tag{19}
\end{gather*}
$$

Step 2.-From the condition that A is displaced a distance $l \alpha$ and from the condition that A is not displaced horizontally, as shown in figure 5 , the following elastic equations may be written:

$$
\begin{align*}
& \sum_{A}^{B} M x \frac{\Delta}{E}=l \alpha \tag{20}\\
& \sum_{A}^{B} M y \frac{\Delta}{E}=0 \tag{21}
\end{align*}
$$

The moment at any point between A and $B=H_{2} y-V_{2} x$. Inserting the general expression for moment into equations (20) and (21) the following are obtained:

$$
\begin{align*}
& H_{2} \sum_{A}^{B} x y \frac{\Delta}{E}-V_{2} \sum_{A}^{B} x^{2} \frac{\Delta}{E}=l \alpha \ldots \tag{22}\\
& H_{2} \sum_{A}^{B} y^{2} \frac{\Delta}{E}-V_{2} \sum_{A}^{B} x y \frac{\Delta}{E}=0 \tag{23}
\end{align*}
$$

Solving equations (22) and (23) for H_{2} and V_{2} :

$$
\begin{align*}
& H_{2}=\left[\frac{l \alpha \sum_{A}^{B} x y \Delta}{\left(\sum_{A}^{B} x y \Delta\right)^{2}-\sum_{A}^{B} x^{2} \Delta \sum_{A}^{B} y^{2} \Delta}\right] E_{\ldots} \text { (24) } \\
& V_{2}=\left[\frac{l \alpha \sum_{A}^{B} y^{2} \Delta}{\left(\sum_{A}^{B} x y \Delta\right)^{2}-\sum_{A}^{B} x^{2} \Delta \sum_{A}^{B} y^{2} \Delta}\right] E_{\ldots \ldots \text { (25) }} \tag{25}
\end{align*}
$$

Whence:

$$
\begin{align*}
& M_{2 B}=H_{2} h-V_{2} l= \\
& {\left[\frac{h\left(l \alpha \sum_{A}^{B} x y \Delta\right)-l\left(l \alpha \sum_{A}^{B} y^{2} \Delta\right)}{\left(\sum_{A}^{B} x y \Delta\right)^{2}-\sum_{A}^{B} x^{2} \Delta \sum_{A}^{B} y^{2} \Delta}\right] E_{\ldots}} \tag{26}
\end{align*}
$$

The basic expressions for the arch rib design constants have already been stated. Substituting in these the expressions for H_{1}, V_{1}, and $M_{1 B}$, derived as equations (17), (18), and (19) in step 1, and the expressions for H_{2}, V_{2}, and $M_{2 B}$, derived as equations (24), (25), and (26) in step 2, the arch rib design constants may now be expressed as follows:

Figure 5.-Sketch for use in step 2 deri tions.

> Induced thrust of arch rib= $\left(H_{1}-H_{2}\right) \div\left(M_{1 B}+M_{2 B}\right)=$ $\frac{h \sum_{A}^{B} x^{2} \Delta-l \sum_{A}^{B} x y \Delta}{l\left(h \sum_{A}^{B} x y \Delta-l \sum_{A}^{B} y^{2} \Delta\right)+h\left(l \sum_{A}^{B} x y \Delta-h \sum_{A}^{B}\right.}$

Thrust stiffness of arch rib $=H_{1} \div h \boldsymbol{\alpha}=$

$$
\left.\left[\frac{\sum_{A}^{B} x^{2} \Delta}{\left(\sum_{A}^{B} x y \Delta\right)^{2}-\sum_{A}^{B} x^{2} \Delta \sum_{A}^{B} y^{2} \Delta}\right] E_{\ldots}\right]
$$

Induced moment of arch rib $=M_{1 B} \div I$

$$
\frac{l \sum_{A}^{B} x y \Delta-h \sum_{A}^{B} x^{2} \Delta}{\sum_{A}^{B} x^{2} \Delta}
$$

Development of Elastic Pier Constu

The elastic pier is assumed to be of uni cross section, in accordance with common struction practice. The moment of iner this member is constant, therefore, anct expressions for moment stiffness, thrust ness, induced moment, and induced thrus 6 be derived directly without recourse t_{1} summation process which is required is case of the arch rib constants. Referri figure 6:

Moment stiffness of pier $=$

$$
\frac{M}{\alpha}=H l \div \frac{l \alpha}{l}=\frac{(H l)(3 E I)}{H l^{2}}=\frac{3 E I}{l}
$$

Moment stiffness of arch rib=

$$
\left(M_{1 B}+M_{2 B}\right) \div \alpha=
$$

$$
\begin{aligned}
& \left\{\left[\frac{l\left(h \alpha \sum_{A}^{B} x y \Delta-l \alpha \sum_{A}^{B} y^{2} \Delta\right)+h\left(l \alpha \sum_{A}^{B} x y \Delta-h \alpha \sum_{A}^{B} x^{2} \Delta\right)}{\left(\sum_{A}^{B} x y \Delta\right)^{2}-\sum_{A}^{B} x^{2} \Delta \sum_{A}^{B} y^{2} \Delta}\right] E\right\} \div \alpha= \\
& {\left[\frac{l\left(h \sum_{A}^{B} x y \Delta-l \sum_{A}^{B} y^{2} \Delta\right)+h\left(l \sum_{A}^{B} x y \Delta-h \sum_{A}^{B} x^{2} \Delta\right)}{\left(\sum_{A}^{B} x y \Delta\right)^{2}-\sum_{A}^{B} x^{2} \Delta \sum_{A}^{B} y^{2} \Delta}\right] E \ldots \ldots \text { (27) }}
\end{aligned}
$$

re 6.-Sketch for use in deriving pier constants.
duced thrust of pier =

$$
\begin{equation*}
\frac{H}{M}-\frac{H}{H l}=\frac{1}{l} \tag{32}
\end{equation*}
$$

arust stiffness of pier $=$

$$
\begin{equation*}
\frac{H}{l \alpha}=H \div \frac{H l^{3}}{3 E I}=\frac{3 E I}{l^{3}} \tag{33}
\end{equation*}
$$

duced moment of pier $=$

$$
\begin{equation*}
\frac{M}{H}=\frac{H l}{H}=l \tag{34}
\end{equation*}
$$

\qquad

Derivation of Sign Conventions

he system adopted for indicating the signs e moments and thrusts is that which seems

(a)

(b)

Figure 7.-Sketches for use in deriving sign convention.
to be preferred by most designers. Moments tending to cause rotation about the joint in a clockwise direction are given a plus sign; moments which tend to cause rotation about the joint in a counter-clockwise direction are given a minus sign. Thrusts to the right are given a plus sign, and thrusts to the left are given a minus sign.

In figure 7 (a), joint B is locked and a load, P, is imposed on the arch. A moment is induced at B, and a thrust at A. The moment tends to rotate the joint in a counterclockwise direction and is given a minus sign. The thrust is to the right and is given a plus sign.

Figure 7 (b) illustrates the action during the first moment distribution cycle. When fixity at B is removed, rotation about the joint is toward the imposed load; and the unbalanced fixed-end moment at B is stabilized by induced balancing moments in all of the members form-
ing the joint. These balancing moments are proportional to the moment stiffnesses of the members, their sum exactly equals the fixedend moment, and they all oppose the counterclockwise rotation, thereby stabilizing the joint. They are accordingly given a plus sign.

The balancing moments induce thrusts as shown in figure 7 (b). Note that the fixed-end thrust has not been considered in the discussion, and that the thrusts shown in figure 7 (b) are entirely induced by the balancing moments.

These considerations lead to the establishment of the following rules of signs:

Arch ribs: Induced thrusts have the same sign as balancing moments. Induced moments have the same sign as balancing thrusts.

Pier: Induced thrusts have a sign opposite to that of balancing moments. Induced moments have a sign opposite to that of balancing thrusts.

SAMPLE ANALYSIS-I

Two-span arched frame with elastic pier, unsymmetrical both horizontally and vertically, and with hinged footings.

Application of Method

valuation of the design constants for arch and pier of a two-span arched frame with tic pier, unsymmetrical both horizontally vertically, and with hinged footings, is trated in the sample analysis that follows.

Component terms in the expressions derived in the preceding section are entered in tabulation forms and are evaluated individually, and are then recombined to obtain the required final values. For greater clarity and speed, many component terms are referred to on the tabulation forms by column number.

Except in unusual cases the entire structure will be composed of the same structural material. The modulus of elasticity, E, may therefore be omitted in evaluating the stiffness constants, since only the relative stiffnesses are required.
(Text continued on page 72.)

Figure 8.-Working drawing of hinged, unsymmetrical two-span arched frame with elastic pier.

Table 1 (a).-Fixed-end moments, fixed-end thrusts, and joint constants, span 1

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Point or a	t	$(\mathrm{col} .2)^{3}$	$d s$	x	y	$\begin{gathered} \operatorname{col} .4 \\ \operatorname{col} .3 \end{gathered}$	$\begin{gathered} \text { col. } 5 \\ \times \mathrm{x} \\ \mathrm{col} .7 \end{gathered}$	$\stackrel{\mathrm{col} .6}{\times}$	$\underset{\substack{\mathrm{col} . ~}}{\times}$	col. 6 col. 9	$\begin{gathered} \mathrm{col} .5 \\ \times \\ \times \mathrm{Col} .9 \end{gathered}$	$\sum_{a+1}^{B} \text { col. } 8$	$\sum_{a+1}^{B} \operatorname{col} .9$	$\sum_{a}^{B} \operatorname{col} .13$	$\sum_{a}^{B} \operatorname{col} .14$
01	2. 46	14.887	4.87	0	2.43	0.327	0	0.80	0	2.6	0	0	0	0	0
0_{2}	2. 78	21. 485	4.87	0	7.30	. 227	0	1. 66	0	12.1	0	0	0	0	0
03	3.17	31.855	4.87	0	12.17	. 153	0	1.86	0	22.6	0	0	0	0	0
04	3. 45	41.064	4.87	0	17.04	. 119	0	2. 03	0	34.6	0	0	0	0	0
1	3. 33	36. 926	4. 92	2.41	19. 92	. 133	. 32	2. 65	. 8	52.8	6.4	130.42	119.55	650.01	520.24
2	2. 58	17.174	4.88	7. 23	20. 58	. 284	2.05	5.84	14.8	120.2	42.2	128. 37	113. 71	519.59	400.69
3	2.04	8.490	4.85	12.05	21.08	. 571	6.88	12.04	82.9	253.8	145.1	121.49	101.67	391.22	286.98
1	1. 70	4.913	4.81	16.87	21.42	. 979	16. 52	20.97	278.7	449.2	353.8	104. 97	80.70	269. 73	185. 31
5	1.60	4.096	4.81	21.69	21.60	1.174	25.46	25. 36	552.2	547.8	550.1	79.51	55.34	164.76	104.61
6	1. 60	4.086	4.81	26. 51	21.64	1. 174	31.12	25.36	825.0	548.8	672.3	48.39	29.98	85.25	49.27
7	1.83	6. 128	4.81	31.33	21. 58	. 785	24.59	16. 94	770.4	365.6	530.7	23.80	13.04	36.86	19. 29
8	2. 33	12.649	4.85	36.15	21.33	. 383	13.85	8.17	500.7	174.3	295.3	9.95	4.87	13.06	6. 25
9	3.08	29.218	4.88	40.97	20.92	. 167	6.84	3.49	280.2	73.0	143.0	3.11	1.38	3.11	1.38
10	4.17	72. 512	4. 92	45. 79	20.35	. 068	3.11	1.38	142.4	28.1	63.2	0	0	0	0
								$\Sigma=$	3,448	2,686	2,802				

1	17	18	19	20	21	22	23	24	25	26	27
Point or a	$\frac{\sum \operatorname{col} .12}{1,000}$	$\frac{\sum \operatorname{col} .10}{1,000} \begin{aligned} & x \operatorname{col} .16 \end{aligned}$	$\frac{\sum \text { col. } 11}{1,000} \begin{aligned} & \text { col. } 15 \end{aligned}$	$\frac{\sum \text { col. } 12}{1,000} \times \begin{aligned} & \text { col. } 16 \end{aligned}$	$\begin{gathered} (\text { col. } 17- \\ \text { col. } 18) \\ \times d x \end{gathered}$	$\begin{gathered} (\text { col. } 19- \\ \text { col. } 20) \\ \times d x \end{gathered}$	$\begin{gathered} H= \\ \operatorname{col} .21 \\ \div C \end{gathered}$	$\begin{gathered} V= \\ \operatorname{col} .22 \\ \div C \end{gathered}$	$\begin{aligned} & (\mathrm{col}, 24 \\ & \times l)- \\ & (\mathrm{col} .23 \\ & \times h) \end{aligned}$	$\stackrel{l-}{\operatorname{col} .5}$	$\begin{gathered} M_{B}= \\ \operatorname{col} .25- \\ \operatorname{col.} .26 \end{gathered}$
01	0	0	0	0	0	0	0	0	0	0	0
O_{2}	0	0	0	0	0	0	0	0	0	0	0
03	0	0	0	0	0	0	0	0	0	0	0
04	0	0	0	0	0	0	0	0	0	0	0
1	1,821.3	1,793.8	1,745.9	1,457. 7	132.5	1,389.1	. 094	. 985	45. 59	45. 79	$-.20$
2	1,455.9	1,381.6	1,395.6	1,122.7	358.1	1,315.4	. 254	. 933	39.86	40.97	-1.11
3	1,096.2	989.5	1,051.8	804.1	514.3	1,189.1	. 365	. 843	33. 29	36.15	-2.86
4	755.8	638.9	724.5	519.2	563.5	989.5	. 400	. 702	25.80	31.33	-5.53
5	461.7	360.7	442.5	293.1	486.8	720.1	. 345	. 511	17. 70	26.51	-8.81
6	238.9	169.9	229.0	138.1	332.6	438.1	. 236	. 311	10.25	21.69	-11.44
7	103.3	66.5	99.0	54.1	177.4	216.4	. 126	. 153	4.84	16.87	-12.03
8	36.6	21.6	35.1	17.5	72.3	84.8	. 051	. 060	1.82	12.05	-10.23
9	8.7	4.8	8.4	3. 9	18.8	21.7	. 013	. 015	. 46	7.23	-6.77
10	0	0	0	0	0	0	0	0	0	2.41	-2.41

$h(\operatorname{arch} \mathrm{rib})=20.1 \mathrm{ft} . \quad l($ arch rib $)=48.2 \mathrm{ft} . \quad d x=4.82 \mathrm{ft} . \quad C=\frac{\sum \operatorname{col} .10 \sum \operatorname{col} .11-\left(\sum \mathrm{col} .12\right)^{2}}{1,000}=1,410$

$$
\begin{aligned}
& \text { Moment stiffness of arch rib }=\frac{\left(\frac{l \Sigma \text { col. } 11}{1,000}-\frac{h \sum \text { col. } 12}{1,000}\right)+h\left(\frac{h \sum \text { col. } 10}{1,000}-\frac{l \Sigma \text { col. } 12}{1,000}\right)}{12 C}=0.130 \\
& \text { Induced thrust of arch rib }=\left(\frac{l \Sigma \text { col. } 12}{1,000}-\frac{h \Sigma \text { col. } 10}{1,000}\right) \div(\text { moment stiffness } \times 12 C)=0.030 \\
& \text { Thrust stiffness of arch rib }=\frac{\sum \text { col. } 10}{1,000} \div 12 C=0.00020 \\
& \text { Induced moment of arch rib }=\left(\frac{\sum \text { col. } 12}{1,000}-h \frac{\sum \text { col. } 10}{1,000}\right) \div \frac{\sum \text { col. } 10}{1,000}=19.1
\end{aligned}
$$

$$
H_{T}=\frac{E T l e \times \frac{\sum \text { col. } 10}{1,000}}{12 \mathrm{C}} \quad V_{T}=\frac{E T l e \times \frac{\sum \text { col. } 12}{1,000}}{12 \mathrm{C}}
$$

Table 1 （b）．－Fixed－end moments，fixed－end thrusts，and joint constanes，span 2

1	2	3	4	5	$1{ }^{1}$	7	8	9	117	11	12	1.3	11	1．）	16
Point or a	t	$\left(\right.$ col．2）${ }^{3}$	ds	x	y	$\begin{gathered} \text { col. } 4 \\ \text { col. } 3 \end{gathered}$	$\begin{gathered} \text { col. } 5 \\ \times 0 . \\ \operatorname{col} .7 \end{gathered}$	$\underset{\substack{\text { col. }{ }^{i} \\ \text { col. } \\ \hline}}{ }$		$\begin{gathered} \text { col. } 6 \\ \times \\ \text { col. } 9 \end{gathered}$		$\underset{a+1}{\text { Licol. } 8}$	$\begin{gathered} \left.\begin{array}{c} B \\ \text { ざ col. } 9 \\ a+1 \end{array}\right) \end{gathered}$	$\sum_{a}^{B} \mathrm{col} .13$	$\stackrel{n}{n} \underset{n}{s} \operatorname{col} 14$
01	2． 09	9． 129	6． 00	0	3.00	0.657	0	1.97	0	5.9	0	$1]$	（）	0	0
02	2.27	11． 697	6． 00	0	9.00	． 513	0	4． 12	0	11． 6	$1)$	0	$1)$	0	0
03	2.45	14． 706	6． 00	0	15．00	． 408	0	6． 12	0	91.8	（）	0	0	0	0
04	2． 63	18． 191	6． 00	0	21.00	． 330	0	6． 93	0	145.5	0	0	0	11	0
$1{ }^{\prime}$	2． 50	15.625	3.33	1．（i0	21． 54	． 213	． 34	5． 23	． 5	128.3	8.4	86． 93	159.53	405． 93	645.28
2^{\prime}	1.96	7． 5330	3.27	4．80	25． 40	434	2.05	11.02	10.0	279．9	52.9	81.85	148.51	319.00	485.75
3^{\prime}	1．62	4． 252	3． 25	8.00	26.04	． 164	6． 11	19.89	48.9	517.9	159.1	78.74	118.62	234.15	337.24
4^{\prime}	1.42	2． 863	3． 23	11.20	26.60	1．12ヶ	12． 63	30． 00	141.5	798.0	336.0	66.11	98.62	155． 41	208．fi2
5^{\prime}	1.35	2． 460	3． 21	14.40	26.88	1．305	18．79	35． 18	270.6	943.0	505． 2	47.32	63.54	89.30	110.00
$6{ }^{\prime}$	1.37	2． 571	3． 20	17．60	26． 94	1． 24.5	21.91	33． 54	38．5． 1	003.6	590.3	25.41	30.00	41.98	46． 40
7 ＇	1.67	4． 657	3． 22	20.80	26． 83	． 691	14.37	18． 54	298.9	497.4	385． 6	11.04	11.45	16． 57	16． 46
s^{\prime}	2． 25	11.391	3． 24	24． 00	26． 62	． 284	6． 82	7.56	163.7	201.2	181.4	？． 22	3． 90	5． 53	5． 10
9^{\prime}	3． 12	30.371	3． 26	27.20	26． 18	． 107	2.91	2．80	79.2	73.3	76.2	1.31	1． 10	1.31	1． 10
10^{\prime}	4.25	75． 765	3． 29	30． 40	25． 60	． 043	1.31	1． 10	39.8	28.2	33.4	0	0	0	0
								$\Sigma=$	1，439	4，656	2， 329				

1	17	18	19	20	21	22	23	24	25	26	27
Point or a	$\begin{aligned} & \Sigma \frac{\operatorname{col} .12}{1,010} \\ & \times \text { col. } 15 \end{aligned}$	$\begin{aligned} & \sum \operatorname{col} .10 \\ & 1,000 \\ & \times \operatorname{col} .16 \end{aligned}$	$\begin{gathered} \Sigma \operatorname{col} .11 \\ 1,000 \\ \times \operatorname{col} .15 \end{gathered}$	$\begin{aligned} & \frac{\text { Ecol. } 12}{1,000} \\ & \text { Xenl. } 16 \end{aligned}$	（a）．17－ （o）．18） $\times d r$	$\begin{gathered} (\text { col. } 19- \\ \text { col. } 20) \\ \times d x \end{gathered}$	$\begin{aligned} & I I= \\ & C(0) .21 \\ & \div C \end{aligned}$	$\begin{gathered} \stackrel{=}{1} \\ c o l .2 \\ \div C \end{gathered}$	$\begin{gathered} ((x), 21 \\ \times l)- \\ (f(x), 23 \\ \times(h) \end{gathered}$	$\frac{1-}{c o b l . ~} 5$	$\begin{aligned} & M_{B^{\prime}}= \\ & \text { col. } 26= \\ & \text { (o). } 25 \end{aligned}$
01	0	0	0	0	0	0	0	0	0	0	11
O_{2}	0	0	0	0	0	0	0	0	0	11	11
03	$1)$	0	0	0	0	0	1）	0	0	0）	0
04	0）	0	0	0	0	0	0	0	（1）	0	，
1^{\prime}	945.2	928.4	1.884 .8	1，5012 5	53.8	1，639．3	． 042	． 9.11	30.91	311．41	$+39$
2^{\prime}	742.8	698.8	1，485． 1	1，132．8	140.8	1，132．8	110	． 885	25.64	27.211	$+1.56$
3^{\prime}	545． 2	485.2	1，090． 1	785.3	192.0	975． 4	150）	764	211． 65	24.00	$+3.35$
4^{\prime}	361.9	300.1	723.5	485.8	197.8	760.6	． 1.5 .5	． 596	15． 15	20． 80	$+5.65$
5^{\prime}	207.9	158.3	415． 7	2．56． 1	158.7	510.7	． 124	． 400	9． 166	17． 611	＋7．94
6^{\prime}	97.8	66.8	195.4	108． 2	99.2	279.0	． 118	． 219	5.04	14．40	＋9．3ii
$7{ }^{\prime}$	38.6	23.7	77.1	38.3	47.7	124.2	0.37	． 0.47	2． 1 h	11． 24	＋9．04
8＇	12.9	7.2	25.7	11.6	18.2	45.1	． 014	． 035	． 77	8.00	$+7.23$
9^{\prime}	3.1	1．f	6.1	2.6	4.8	11.2	． 004	． 0109	． 19	4． 80	＋4．61
10^{\prime}	0	0	0	0	0	0	0	0	11	1． B $^{\prime} 1$	＋1．6；

$(\mathrm{ch} \mathrm{rib})=25.3 \mathrm{ft} . \quad l(\operatorname{arch} \mathrm{rib})=32.0 \mathrm{ft} . \quad d x=3.20 \mathrm{ft} . \quad C=\frac{\sum \operatorname{col} .10 \sum \operatorname{col} .11-(\mathrm{s} \text { col．} 12)^{2}}{1.000}=1,2 \pi 6$
lent stiffness of arch rib $=\frac{l\left(\frac{l \Sigma \text { col．} 11}{1,000}-\frac{h \Sigma \operatorname{col} .12}{1,000}\right)+h\left(\frac{h \Sigma \operatorname{col} 10}{1,000}-\frac{l \Sigma \mathrm{col.12}}{1,000}\right)}{12 \mathrm{C}}=0.125$

Heed thrust of arch rib $=\left(\frac{l \Sigma \operatorname{col} .12}{1,000}-\frac{h \Sigma \operatorname{col} .10}{1,000}\right) \div($ moment stiffness $\times 12 C)=0.020$
ust stifiness of arch rib $=\frac{\sum \text { col．} 10}{1,000} \div 12 \quad C=0.00009$
seed moment of arch rib $=\left(l \frac{\sum \text { col．} 12}{1,000}-h \frac{\sum \operatorname{col} .10}{1,000}\right) \div \frac{\sum \text { col．} 10}{1,000}=26.5$
$H_{T}=\frac{\operatorname{Erle} \times \frac{\sum \operatorname{col} 10}{1,000}}{12 C}$
$V_{T}=\frac{E T l e}{} \times \frac{\sum \text { col．} 12}{1,000}{ }_{12 C}^{C}$

Table 2．－Pier constants
$l=22.5 \mathrm{ft} . \quad t=2.0 \mathrm{ft}$.
$I=t^{3} 112=0.667$

Expression	Valut
Moment stiffness $=31 \div l=$	（1．） 11×9
Induced thrust $=1 \div l=$	． 14.4
Thrust stiffness $=31 \div l^{3}=$	．106015
Induced moment $=l=$	22.5

Table 3.-Distribution of moment and thrust stiffness
Table 4.-Distribution of induced moments and thrusts

Member	Moment stiffness		Thrust stiffness	
	Value	Distribution factor	Value	Distribution factor
Arch rib, span 1	0.130	Percent 38	0. 00020	Percent 43
Arch rib, span 2	. 125	36	. 00009	19
Pier	. 089	26	. 00018	38
Total	0.344	100	0.00047	100

The structure (fig. 8) used for the sample analysis is unsymmetrical both horizontally and vertically. It has been chosen to emphasize the important advantage possessed by this method, in common with ordinary moment distribution, of being applicable to unsymmetrical as well as symmetrical structures with almost equal facility. In structures of this type the three frame footings are frequently at different elevations due to differences in the elevation of satisfactory foundation material. Horizontal dissymmetry has been less common in the past, but may be expected to occur more frequently in the construction of modern highways and interchanges, requiring numerous structures which must fit the alinements and clearances otherwise determined.

The sequence of the various steps in the sample analysis follows that used in the development of the method. The procedure as applied to an actual analysis is as follows:

1. A working drawing of the frames is made, and required basic data are scaled and entered in the tabulation forms.
2. The tabulation forms are then completed by the calculations indicated in the column headings, and the expressions below the tables are computed.
3. Moment and thrust distribution factors are computed.
4. A unit moment and a unit thrust are distributed individually at each side of the joint (at one side only if the structure is symmetrical)
5. Final distributed moments and thrusts are obtained by simple proportion to the unit distributed moments and thrusts.
1.-Construction and measurement of working drawing

The structural frames are laid out to a convenient scale, as shown in figure 8 . Sufficient accuracy usually may be obtained with a scale of one-fourth or one-half inch equals one foot. The neutral axis lines of the arch ribs are drawn midway between the face surfaces. The neutral axis lines of the frame legs are drawn as perpendicular lines bisecting the bases of the legs at the footing tops. This involves a slight inaccuracy, but eliminates unwarranted refinement. The design spans between the neutral axis lines of the piers and frame legs are each divided into 10 equal horizontal parts which are projected vertically onto the neutral axis lines of the arch ribs, making 10 ds divisions.

The centers of gravity of the $d s$ divisions are for convenience assumed to be at their midpoints in horizontal projection. These centers of gravity are numbered 1 through 10 for span

1 (the left arch) and 1^{\prime} through 10^{\prime} for span 2 (the right arch). Four longitudinal divisions are made of the frame leg neutral axis lines, and the midpoints of these $d s$ divisions are located and designated O_{1} through O_{4}. The lengths of the $d s$ divisions are scaled and are entered in column 4 of the tabulation forms, tables 1 (a) and 1 (b), opposite the proper points. In the analysis, a load of unity is placed successively at each numbered point on the arch ribs.

Values of t, x, and y at each load point are obtained by scaling, and are recorded in columns 2, 5, and 6 on the tabulation forms. The required x and y values are, respectively, the horizontal distance from the neutral axis line of the frame leg and the vertical distances from a level line through the hinge, to the numbered load points. The t values are the thicknesses of the various sections, measured radially through each load point. The remaining data for the analysis are derived in the tabulation from these basic measurements.

2.-Completion of tabulation forms

Moments of inertia of the sections are computed in column 3 as t^{3} instead of the true value, $t^{3} \div 12$, in order to avoid large figures in the subsequent columns. It is necessary, however, to reinsert the factor 12 in some of the final expressions in order to make them applicable to a section 1 foot wide instead of 12 feet wide, and this is done in the stiffness and thrust expressions and also in the expressions for H_{t} and V_{t}, which appear below the tabulations in tables 1 (a) and 1 (b).

Entries for columns 7 to 12 , inclusive, are computed as indicated by the column heads. Note that totals are recorded for columns 10, 11 , and 12 .

The method of computing entries for columns 13 to 16 , inclusive, involves the summation process, and an explanation of this procedure may be helpful. Assume that it is desired to solve for H and M_{B} due to a load of unity at point 1 . Point 1 is therefore taken as a. The entry for column 13 is to be the summation from $a+1$ to B of $x \Delta$, which is the sum of the $x \Delta$ values in column 8 from point 2 to point 10, inclusive. The entry for column 14 is similarly computed except that $y \Delta$ values, in column 9 , are used for summation.

The entry in column 15 is to be the summation from a to B of column 13 , and for point 1 this is the sum of the values in column 13 from point 1 to point 10 , inclusive. The entry for column 16 is similarly computed except that values in column 14 are used for summation.

If H and M_{B} were desired only for a of unity at point 1, it would simply be ne sary to complete the operations indicated columns 17 to 27 , inclusive, along the opposite point 1 . In the sample analysis and M_{B} are computed for 10 positions of unit load on each arch, and the tabulati are completed in full.

In several of the columns of the tabulail forms, tables 1 (a) and 1 (b), and in the pressions below them, division by 1,00 indicated. This is merely a device to as large figures, not a function of the formulas.

The constant C, which appears below tabulation forms, is a term that is deri from the totals of columns 10,11 , and 12 . is evaluated independently for convenienc use in the computation of entries for colu 23 and 24 and for the expressions which apl below the form.

The computation of the pier constant illustrated in table 2 (bottom of page 71).

3.-Computation of moment and thrust
 tribution factors

The values derived in the expressions b the tabulation forms in tables 1 (a) and 1 and in table 2, are used in obtaining rela values of moment and thrust stiffness, values of induced moments and thrusts.

The moment and thrust distribution far are evaluated in exactly the same mannes in ordinary moment distribution. Thi illustrated in table 3. The moment stiff values for the structure members, derive tables 1 (a), 1 (b), and 2, are entered in? proper column and are totaled. Each is divided by the total, yielding the dists tion factor. The thrust stiffness distribu is handled in the same manner.

The method of distributing the ind moments and thrusts is shown in table 4 fo which the figures were derived in tables 1 s 1 (b), and 2. The values are constant which distributed moments and distrib thrusts are multiplied, for purposes descm in the next step of the procedure.
4.-Distribution of a unit moment all unit thrust

Completion of the tabulation forms, t 1 (a) and 1 (b), provides the fixed-end ments and their correlated fixed-end th s due to a unit load at 10 positions on each : The juncture of the arch ribs and pier thus far been considered completely fixe that transfer of moment or thrust from member to the others is not permitted. next step consists of distributing each related fixed-end moment and fixed-end tlu so that for each position of the unit actual moments at the joint and reactio all three footings are obtained.

Tables 5-8.-Unit moment and thrust distributions

SPAN 1 SPAN 2
Induced Thrists
$0.030 \times$ moment (arch rib, span 1) $0.020 \times$ moment (arch rib, span 2) $0.044 \times$ moment (pier)

THRUST DISTRIBUTION FACTORS

Induced Moments
$19.1 \times$ thrust (arch rib, span 1) $26.5 \times$ thrust (arch rib, span 2) $22.5 \times$ thrust (pier)

Table 5.-Distribution of unit moment, span 1

Rib	Pier	Rib
-1.000	0	0
+.380	+.260	+.360
-.057	+.068	-.027
+.006	+.004	+.006
\cdots	\cdots	\cdots
$\cdots-\cdots$	\cdots	\cdots
-.671	+.332	+.339

	Rib	Pier	Rib
0	0	0	
Induced thrust \rightarrow			
LInduced moment	+.011	-.011	+.007
Induced thrust \rightarrow	-.003	-.003	-.001
\leftarrow Induced moment	\ldots	\ldots	
+.008	-.014	+.006	

Table 6.-Distribution of unit thrust, span 1

jd-end moment. . .	Rib	Pier	Rib		Rib	Pier	Rib	
	0	0	0	\leftarrow Induced moment	+1.000	0	0	-.-- Fixed-end thrust
	-8. 213	+8.550	-5.035		-. 430	-. 380	-. 190	--- Balaneing thrust
pancing moment--	+1.785	+1. 221	$+1.691$	Induced thrust \rightarrow	+. 054	-. 054	+. 034	
	-. 287	+. 293	-. 159	\leftarrow Induced moment	-. 015	-. 013	$-.006$..- Balancing thrust
ancing moment t al moments.	+. 058	+. 040	+. 055	Induced thrust \rightarrow	+. 002	-. 002	$+.001$	
	-6.657	+10.104	-3.448					Balancing thrust
					+. 611	-. 449	-. 161	.-. Final thrusts

Table 7.-Distribution of unit moment, span 2

	Rib	Pier	Rib
feed-end moment....	0	0	+1.000
lancing moment....	-. 380	-. 260	-. 360
	+. 057	-. 068	+. 027
lancing moment....	-. 006	-. 004	$-.006$
lancing moment nal moments			
	$-.329$	-. 332	+. 661

Table 8.-Distribution of unit thrust, span 2

Since 20 positions of the unit load on both arches are considered, it would appear that a prohibitive number of distributions is required. Actually, only two distributions are required for symmetrical structures, and four if the structure is unsymmetrical.

Referring to table 5 in the sample analysis, it will be noted that a fixed-end moment of unity is applied to the joint at the juncture of the left arch rib. This moment is distributed in a manner similar to that of ordinary moment distribution, using the moment distribution factors computed in table 3 and shown around the joint in the left-hand sketch above table 5 . The values of the distributed moments are shown in the left tabulation of table 5. This shows, first, the unit moment of -1.000 opposite the stub "fixed-end moment," and, immediately below, the distributing moments opposite the stub "balancing moments."

Next, the first arrow, "induced thrusts," is followed to the tabulation at the right, and the thrusts induced by the balancing moments are entered. These values are obtained by multiplying each balancing moment by the corresponding induced thrust constants, previously computed in table 4 and repeated for convenience under the sketch above table 5 .

Next, these unbalanced thrusts are balanced exactly as if they were unbalanced moments, but using the thrust distribution factors computed in table 3 and shown around the joint. in the right-hand sketch above table 5. Now the second arrow, "induced moments," is followed to the left, and the new moments induced by the balancing thrusts are entered. These values are obtained by multiplying each balancing thrust by the corresponding induced moment constants, previously computed in table 4 and repeated for convenience under the sketch above table 5 .

This procedure is repeated until the converging values become so small that further refinement is unnecessary. As shown in the actual example, convergence occurs rapidly.

In table 6 a fixed-end thrust of unity is distributed in the same manner as described above for a unit moment, and final values of moments and thrusts are obtained.

The significance of these procedures may be summarized as follows:
(a) A load is placed on one of the frames but the joint at the middle is fixed, so that the moment at the joint and the outward "kick," or thrust, are so-called "fixed-end" values.
(b) Considering the fixed-end moment and fixed-end thrust independently of each other, the fixity at the joint is first released, and then final values of moment and thrust due only to the fixed-end moment are computed. Computation is similarly made of final values of moment and thrust due only to the fixed-end thrust.
(c) Individual values are now added algebraically to obtain final values due to the load that caused the fixed-end moment and fixedend thrust.
The structure analyzed in the example is unsymmetrical, and the process is therefore repeated for the right arch in tables 7 and 8 It is important to note, however, that all the distributed values in the distribution for the
right arch are identical with those for the left arch, with signs changed. This fact saves considerable time in the second procedure.

5.- Evaluation of final distributed moments and thrusts

The manmer of obtaining final distributed moments and thrusts for span 1 is illustrated in tables !? (a), 9 (b), and 9 (c) of the sample analysis. In table 9 (a) are recorded the values of $M_{B}, M_{B^{\prime}}, H_{1}, H_{2}$, and H_{3} due to a distributed fixed-end moment of unity; and
similar values due to a distributed fixed-end thrust of unity are recorded in table 9 (b). These values are, of course, obtained from tables 5 and 6 .

In the second column of table 9 (c) the fixedend moments at each load point are recorded as obtained in column 27 of table 1 (a). In the third column the fixed-end thrusts at each load point are recorded as obtained in column 23 of table 1 (a).

Each of the values in table 9 (a) is then multiplied by the actual fixed-end moment for
each load point and the results record Similarly, each of the values in table 9 (b multiplied by the actual fixed-end thrust each load point. The sums of the correspor ing pairs of values obtained by these two sel of multiplications are then recorded, and the final distributed values of moment a thrust for a load of unity at each load poi

The final distributed moments and thru, for span 2 are obtained in the same manner, illustrated in tables 10 (a), 10 (b), and 10 of the sample analysis.

Table 9.-Tabulation of final moments and thrusts, span 1

Table 9 (a)

Fixed-end moment $=-1.000$				
M_{B}	$M_{B^{\prime}}$	I_{1}	I_{2}	I_{3}
-0.671	+0.339	+0.008	-0.014	+0.006

Table 9 (b)

Fixed-end thrust $=+1.000$				
M_{B}	$M_{B^{\prime}}$	H_{1}	H_{2}	H_{3}
-6.657	-3.448	+0.611	-0449	$-0,161$

Table 9 (c)

Unit load at point-	$\begin{gathered} \text { Fixed- } \\ \text { end } \\ \text { moment } \end{gathered}$	Fixedend thrust	M and $I I$ due to fixed-end moment					M and $I I$ due to fixed-end thrust					Final values of M and H				
			M_{B}	$M_{B}{ }^{\prime}$	H_{1}	H_{2}	H_{3}	M_{B}	$M_{B^{\prime}}$	H_{1}	H_{2}	H_{3}	M_{B}	$M_{B}{ }^{\prime}$	H_{1}	H_{2}	H_{3}
1	-0. 20	+0. 094	-0.13	+0.07	$+0.002$	-0.003	+0. 001	-0.62	-0. 32	$+0.058$	-0.042	-0.015	-0.75	-0. 25	$+0.060$	-0.045	-0.014
2	-1.11	+. 254	$-.72$	+. 38	+. 010	-. 017	+. 007	-1.68	-. 87	$+.156$	-. 115	-. 041	-2.40	-. 49	+. 166	-. 132	-. 037
3	-2.86	+. 365	-1.86	+. 97	$+.026$	-. 043	+. 017	-2.41	-1.25	+. 224	-. 165	-. 058	-4.27	-. 28	+. 250	-. 208	-. 041
4	-5.53	+. 400	-3.59	+1.88	+.050	-. 083	+. 033	-2.65	-1.37	+. 245	-. 181	$-.064$	-6.24	+. 51	+. 295	-. 264	-. 031
5	-8.81	+. 345	-5.73	$+3.00$	+.079	-. 132	+.053	-2.28	-1.19	+. 211	-. 156	$-.055$	-8.01	$+1.81$	+. 290	-. 288	-. 00:
6	-11.44	+. 236	-7.44	+3.89	+. 102	-. 172	$+.069$	-1.56	-. 81	+. 145	-. 107	$-.038$	-9.00	$+3.08$	+. 247	-. 279	+. 031
7	-12.03	+. 126	$-\mathrm{C} .82$	+4.09	+. 108	-. 180	+. 072	-. 83	-. 43	+. 077	-. 057	$-.020$	-8.65	+3.66	+. 185	-. 237	+. 05^{*}
8	-10.23	+. 051	-6. 65	+3.48	+. 092	-. 153	+. 061	$-.34$	-. 18	+. 031	-. 023	-. 008	-6. 99	+3. 30	+. 123	$-.176$	+. 05 :
9	-6.77	+. 013	-4.40	+2.30	+.061	-. 102	+. 041	-. 09	-. 04	+. 008	$-.006$	$-.002$	-4.49	+2. 26	+. 069	-. 108	+.03!
10	-2.4]	0	-1.57	+.82	+. 022	$-.036$	+. 014	0	0	0	0	0	-1.57	+. 82	+. 022	-. 036	+.014

Table 10.-Tabulation of final moments and thrusts, span 2

Table 10 (a)

Fixed-end moment $=+1.000$				
M_{B}	$M_{B^{\prime}}$	H_{1}	H_{2}	H_{3}
-0.329	+0.661	-0.008	+0.014	-0.006

Table 10 (b)

Table 10 (c)

Unit load at point -	Fixed-endmoment	Fixedend thrust	M and $I I$ due to fixed-end moment					M and H due to fixed-end thrust					Final values of M and $H I$				
			M_{B}	$M_{B^{\prime}}$	H_{1}	H_{2}	H_{3}	M_{B}	$M_{B}{ }^{\prime}$	H_{4}	H_{2}	H_{3}	M_{B}	$M_{B^{\prime}}$	H_{1}	H_{3}	H_{3}
10^{\prime}	+1.60	0	-0. 56	$+1.06$	-0.014	+0.024	-0.010	0	0	0	0	0	-0.56	+1.06	-0.014	+0.024	-0.011
9^{\prime}	+4.61	-. 004	-1.61	+3.04	-. 041	+. 069	-. 028	+. 020	+. 014	+. 002	+. 002	-. 003	-1.58	+3.05	-. 039	+. 071	-. 03
8^{\prime}	+7.23	-. 014	-2.53	+4.77	-. 065	+. 108	-. 043	+. 093	+. 048	+. 005	$+.006$	-. 012	-2.44	+4.82	-. 060	+. 114	-. 05
7^{\prime}	+9.04	$-.037$	-3.16	+5.97	-. 081	+. 136	-. 054	+. 245	+. 127	+. 014	+. 017	-. 031	-2.91	+6. 10	-. 067	+. 153	-. 08
6^{\prime}	+9.36	-. 078	-3.28	+6. 18	$-.1884$	+. 140	$-.056$	+. 516	+. 268	+.030	+. 035	-. 066	-2.76	+6.45	-. 054	$+.175$	-. 12
5^{\prime}	+7.91	-. 124	-2.78	+5. 24	-. 071	+. 119	-.048	+. 820	+.426	+. 048	+. 056	-. 104	-1.96	+5.67	-. 023	+.175	-. 15
4^{\prime}	+5.65	-. 155	-1.9\%	+3.73	$-.051$	+. 085	-. 034	+1.025	+. 533	+. 060	+. 070	-. 130	-0.95	+4.26	+. 009	+. 155	-. 16
3^{\prime}	+3.35	-. 150	-1.17	$+2.21$	-. 030	+. 050	-. 020	+. 992	$+.515$	+. 058	+. 068	-. 126	-0.18	+2.73	+. 028	+. 118	+. 14
2	+1.56	-. 110	-. 55	+1.03	-. 014	+. 023	-. 009	+. 728	+.378	+. 043	$+.050$	-. 092	+0. 18	+1.41	+. 029	+. 073	-. 10
1^{\prime}	+. 38	-. 042	-. 14	+. 26	-. 004	+.006	-. 002	+.278	+. 144	+. 016	+. 019	-. 035	+0. 14	+. 40	+. 012	+. 025	$-.03$

Part II.-ANALYSIS OF STRUCTURES WITH FIXED FOOTINGS

Required Design Constants

The joint constants for the condition of $f: d$ footings include all of the design conints used in the analysis for hinged footings Wh identical definitions (see page 66). To tis group are added the following: 'nduced moment at footing. - The moment aced at the footing by a horizontal thrust B without vertical displacement or rotation B.
Moment carry-over. - The ratio of moment Huced at the footing to an applied moment B without horizontal or vertical displaceint at B.

L:velopment of Fixed-End Moment and Fixed-End Thrust

From the conditions that point A is not dplaced horizontally, that point A is not dplaced vertically, and that no rotation of

Irure 9.-Sketch for use in deriving fixedend moments and thrusts.
t : end tangents occurs, as shown in figure 9 , $t \geqslant$ following elastic equations may be written:
${ }_{i}^{1} M \frac{d s}{E I}$ (change in angle between end tangents) $=0$..-.-......-.-.-.-. (35)
$M x \frac{d s}{E I}($ vertical displacement of $A)=0$
$M y \frac{d s}{E \bar{I}}($ horizontal displacement of $A)=0$

The moment at any point between A and $a=M_{A}+V x-H y$.
The moment at any point between a and B, vien P is unity,$=M_{A}+V x-H y-(x-a)$.
For convenience, the following symbols are sopted:

$$
\begin{array}{lll}
=\Delta & \sum_{A}^{B} x \Delta=B & \sum_{A}^{B} x^{2} \Delta=D \\
\hdashline \Delta=A & \sum_{A}^{B} y \Delta=C & \sum_{A}^{B} y^{2} \Delta=E
\end{array}
$$

$$
\sum_{A}^{B} x y \Delta=F \quad \sum_{a}^{B}(x-a) x \Delta=K_{2}
$$

$$
\sum_{a}^{B}(x-a) \Delta=K_{1} \quad \sum_{a}^{B}(x-a) y \Delta=K_{3}
$$

E, being constant for the entire structure, may be eliminated from the basic equations in evaluating external moments and reactions due to flexure.

Inserting the general expression for moment in equations (35), (36), and (37), and using the abbreviated notation, the following equations are obtained:

$$
\begin{align*}
& M_{A} A+V B-H C-K_{1}=0 \tag{38}\\
& M_{A} B+V D-H F-K_{2}=0 \tag{39}\\
& M_{A} C+V F-H E-K_{3}=0 \tag{40}
\end{align*}
$$

$$
\begin{equation*}
H=\frac{K_{3}\left(\frac{B^{2}}{A}-D\right)-K_{2}\left[\frac{C}{B}\left(\frac{B^{2}}{A}-D\right)+\left(\frac{D C}{B}-F\right)\right]+K_{1} \frac{B}{A}\left(\frac{D C}{B}-F^{\prime}\right)}{\left(\frac{B^{2}}{A}-D\right)\left(\frac{F C}{B}-E\right)-\left(\frac{C B}{A}-F\right)\left(\frac{D C}{B}-F\right)} \tag{43}
\end{equation*}
$$

For further simplification the following symbols are used:

$$
\begin{array}{ll}
C_{1}=\frac{C}{B} & C_{6}=\frac{C B}{A}-F \\
C_{2}=\frac{B}{A} & C_{7}=\frac{D}{B} \\
C_{3}=\frac{B^{2}}{A}-D & C_{8}=\frac{A D}{B}-B \\
C_{4}=\frac{D C}{B}-F & C_{H}=C_{3} C_{5}-C_{6} C_{4} \\
C_{5}=\frac{F C}{B}-E &
\end{array}
$$

Substituting these symbols in equation (43):

$$
\begin{equation*}
H=\frac{K_{1} C_{2} C_{4}-K_{2} C_{6}+K_{3} C_{3}}{C_{H}} \tag{44}
\end{equation*}
$$

Substituting the symbols in equation (41):

$$
\begin{equation*}
V=\frac{H C_{6}+K_{1} C_{2}-K_{2}}{C_{3}} \tag{45}
\end{equation*}
$$

From equations (38) and (39):

$$
\begin{equation*}
M_{A}=\frac{H C_{4}+K_{1} C_{7}-K_{2}}{C_{8}} \tag{46}
\end{equation*}
$$

The expressions for M_{A}, H, and V are evaluated by means of the tabular computation form, illustrated in the sample analysis. As in the tabular form for hinged footings, the expressions

$$
\sum_{a}^{B}(x-a) \Delta, \sum_{A}^{B}(x-a) x \Delta, \text { and } \sum_{a}^{B}(x-a) y \Delta
$$

are equated to the expressions

$$
\sum_{a}^{B} \sum_{a+1}^{B} \Delta d x, \sum_{a}^{B} \sum_{a+1}^{B} x \Delta d x, \text { and } \sum_{a}^{B} \sum_{a+1}^{B} y \Delta d x
$$

The general procedure in adapting the various expressions to a tabular computation form is also similar to that employed in the analysis for hinged footings, and reference thereto will be helpful in studying the form as arranged for fixed footings.

Solving equations (38) and (39):
$V\left(\frac{B^{2}}{A}-D\right)-I\left(\frac{C B}{A}-F\right)-K_{1} \frac{B}{A}+K_{2}=0$

Solving equations (39) and (40):
$V\left(\frac{D C}{B}-F\right)-H\left(\frac{F C}{B}-E\right)-K_{2} \frac{C}{B}+K_{3}=0$

Solving equations (41) and (42) for $I I$, and clearing:

Development of Arch Rib Design Constants

The arch rib design constants are derived in two steps. First the rib is given a unit rotation at B, and $H_{1}, V_{1}, M_{1 A}$, and $M_{1 B}$ are computed. No horizontal or vertical displacement is permitted in this step. Then the rib is given a unit horizontal displacement without vertical displacement, and H_{2}, V_{2}, $M_{2 A}$, and $M_{2 B}$ are computed. These values of M, V, and H are then combined as required to obtain all the necessary joint constants, as well as expressions for H_{T} and V_{T} caused by temperature change.

In deriving the expressions, the system of notation used in obtaining expressions for fixed-end moments and thrusts is adopted. Values obtained in the computation for fixedend moments and thrusts are used in evaluating the expressions for the joint constants. No additional basic computation is required.

Figure 10.-Sketch for use in step 1 derivalions.

Step 1. - The arch rib is given a unit rotation at B and no horizontal or vertical displacement at A is permitted, as shown in figure 10. Then:

$$
\begin{align*}
& M_{1 A} A+V_{1} B-H_{1} C=1 \\
& M_{1 A} B+V_{1} D-H_{1} F=l_{-} \tag{array}\\
& M_{1 A} C+V_{1} F-H_{1} E=h_{-}
\end{align*}
$$

Solving equations (47) and (48):

$$
\begin{equation*}
V_{1}\left(\frac{B^{2}}{A}-D\right)-H_{1}\left(\frac{C B}{A}-F\right)=\frac{B}{A}-l_{-} \tag{50}
\end{equation*}
$$

Solving equations (48) and (49):

$$
V_{1}\left(\frac{D C}{B}-F\right)-H_{1}\left(\frac{F C}{B}-E\right)=l \frac{C}{B}-h_{--}(51)
$$

The coefficients 10,100 , and 10,000 are introduced in the following equations to make the expressions for $H_{1} V_{1}$, and $M_{1 A}$ applicable to the computation form used in the sample analysis, in which actual values of x and y are divided by 10 , reducing the numerical order of the derived quantities.

Solving equations (50) and (51), and clearing:

$$
\begin{equation*}
H_{1}=\frac{\left(l C_{1}-h\right) 100 C_{3}-\left(10 C_{2}-l\right) 100 C_{4}}{-10,000 C_{H}^{-}} \tag{52}
\end{equation*}
$$

From equation (50):

$$
\begin{equation*}
V_{1}=\frac{H_{1}\left(100 C_{6}\right)+10 C_{2}-l}{100 C_{3}} \tag{53}
\end{equation*}
$$

From equations (47) and (48):

$$
\begin{equation*}
M_{1 A}=\frac{H_{1}\left(100 C_{4}\right)+10 C_{7}-l}{10 C_{8}} \tag{54}
\end{equation*}
$$

From statics:

$$
M_{1 B}=M_{1 A}+V_{1} l-H_{1} h \ldots \ldots(55)
$$

Slep 2.-The arch rib is given a unit horizontal displacement, without vertical displacement, equal to the arch height, h, as shown in figure 11. Then:

$$
\begin{aligned}
& M_{2 A} C+V F-H E=h_{1} \ldots(56) \\
& M_{2 A} B+V D-H F=0 \ldots \\
& M_{2 A} A+V B-H C=0 \ldots
\end{aligned}
$$

Figure 11.-Sketch for use in step 2 derivations.

Solving equations (56) and (57):

$$
\begin{equation*}
V\left(\frac{D C}{B}-F\right)-H\left(\frac{F C}{B}-E\right)=-h_{\ldots} \tag{59}
\end{equation*}
$$

Solving equations (57) and (58):

$$
\begin{equation*}
V\left(\frac{B^{2}}{A}-D\right)-H\left(\frac{C B}{A}-F\right)=0 \ldots \tag{60}
\end{equation*}
$$

Solving equations (59) and (60), and clearing:

$$
\begin{equation*}
H_{2}=\frac{-h\left(100 C_{2}\right)}{-1,000 C_{H}} \tag{61}
\end{equation*}
$$

From equation (60):

$$
\begin{equation*}
V_{2}=\frac{H_{2} C_{6}}{C_{3}} \tag{62}
\end{equation*}
$$

Equations (61) and (62) may be used in evaluating H_{T} and V_{T} due to temperature change by substituting \pm (ETle) $\div 12$ for h. The factor 12 is inserted to correct for the use of t^{3} instead of $t^{3} / 12$ (where $t=$ radial depths of sections at load points) for values of I in the computation form.

Solving equations (57) and (58) for $M_{2 A}$:

$$
\begin{equation*}
M_{2 A}=\frac{H_{2}\left(100 C_{4}\right)}{10 C_{8}} \tag{63}
\end{equation*}
$$

From statics:

$$
M_{2 B}=M_{2 A}+V_{2} l-H_{2} h_{\ldots} \ldots(64)
$$

Using the values of $H_{1}, V_{1}, M_{1 A}, M_{2 A}, H_{2}$, $M_{2 A}$, and $M_{2 B}$, and inserting the factor where required to correct for the use 0 instead of $t^{3} / 12$ in the computation form, joint constants for the arch ribs may expressed as follows:

Moment stiffness $=M_{1 B} \div 12$
Induced thrust $=H_{1} \div M_{1 B}$
Thrust stiffness $=H_{2} \div 12 h$
Induced moment (at pier top) $=M_{2 B} \div 1$ Induced moment (at footing) $=-M_{2 A} \div$

Moment carry-over $=-M_{1 A} \div M_{1 B}$

Development of Elastic Pier Constants

The elastic pier constants are derived fig. 12) by giving A a unit rotation wit vertical displacement, and evaluating the moment stiffness, and P / M, the ind thrust. P is the force developed in resti

Figure 12.-Sketch for use in deriving elc pier constants.
ing the ends against displacement. Mor carry-over is expressed by the term, M_{B}

Point A is then given a vertical disp) ment, $\delta=1$, from which the thrust stiff: P / δ, and induced moment, M_{A} / P, are evalus

Performing these operations, the follo expressions for the elastic pier constants obtained:

Moment stiffness $=4 I \div l$ (relative)
Induced thrust $=3 \div 2 l$
Thrust stiffness $=12 I \div l^{3}$ (relative)
Induced moment $=l \div 2$
Moment carry-over $=+0.5$

SAMPLE ANALYSIS-II

Two-span arched frame with elastic pier, unsymmetrical both horizontally and vertically, and with fixed footings.

Application of Method

Evaluation of the design constants for arch ribs and pier of a two-span arched frame with elastic pier, unsymmetrical both horizontally and vertically, and with fixed footings, is illustrated in the sample analysis that follows. The structure is identical with that analyzed in part I (fig. 8), except that the footings are fixed instead of hinged.

The general procedure and sign convention are closely similar to those used in the analysis of the structure with hinged footings. A working drawing of the frames is made to convenient scale, from which values of $t, d s, x$,
and y are scaled. These values are entered in tables 11 (a) and 11 (b), the scaled x and y dimensions first being divided by 10 .

The tables are then completed by the computations indicated in the column headings. It will be noted that columns 7 to 12, inclusive, are each totaled to obtain values of A, B, C, D, E, and F, which in turn are used to obtain the C "subscript" series of values. The latter are used in computation of entries in some of the table columns.

The C "subscript" values are also used in computing the moments, vertical reactions, and thrusts for each span, as shown in table 11 (c). These in turn are used to derive arch rib joint constants as illustrated in table 11 (d).

Derivation of the pier constants appea table 12.

Moment and thrust stiffness distrib factors are computed in table 13 , anc method of distributing induced mor and thrusts and moment carry-overs is s in table 14 . Tables $15,16,17$, and 18 trate the distribution of a unit moment a unit thrust for each of the two spans. evaluation of final distributed moments: thrusts is shown in tables 19 and 20.

Additional computations are providr tables 21 and 22 for obtaining mor induced at the footing by balancing th and moments carried over by bala moments.

Table 11 (a).-Fixed-end moments and fixed-end thrusts, span 1

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
$\operatorname{lint}_{\mathrm{r} a}^{\mathrm{in}}$	t	$(\mathrm{col.2})^{8}$	ds	$\frac{x}{10}$	$\frac{y}{10}$	$\begin{gathered} \mathrm{col} .4 \\ \mathrm{col.} \\ \hline \end{gathered}$	$\begin{aligned} & \text { col. } 5 \\ & \times \\ & \text { col. } 7 \end{aligned}$	$\begin{aligned} & \text { col. } 6 \\ & \times \\ & \text { col. } 7 \end{aligned}$	$\begin{gathered} \mathrm{col} .5 \\ \times \\ \mathrm{col} .8 \end{gathered}$	$\begin{aligned} & \text { col. } 6 \\ & \times \\ & \times{ }^{-01 .} 9 \end{aligned}$	$\begin{gathered} \text { col. } 5 \\ \times \\ \text { col. } 9 \end{gathered}$	$\sum_{a+1}^{B} c o l .7$	$\sum_{a+1}^{B} \operatorname{col} .8$	$\sum_{a+1}^{B} \operatorname{col.} 9$	$\sum_{\substack{a \\ \times 0.1 d x}}^{B}$		${\underset{a}{B} \operatorname{col} .15}_{\times 0.1 d x}$
$0{ }_{1}$	2. 46	14.887	4.87	0	0.243	0.327	0	0.080	0	0.019	0	0	0	0	0	0	0
0^{2}	2.78	21.485	4.87	0	. 730	. 227	0	. 166	0	. 121	0	0	0	0	0	0	0
0_{3}	3. 17	31.855	4.87	0	1. 217	. 153	0	. 186	0	. 226	0	0	0	0	0	0	0
04	3. 45	41.064	4.87	0	1. 704	. 119	0	. 203	0	. 346	0	0	0	0	0	0	0
1	3.33	36.926	4.92	. 241	1.992	. 133	032	265	. 008	. 528	. 064	5. 585	13.042	11.960	11.697	31.330	25. 088
2	2. 58	17.174	4.88	. 723	2.058	. 284	. 205	. 584	. 148	1. 202	. 422	5. 301	12.837	11.376	9. 005	25. 044	19.323
3	2.04	8. 490	4.85	1. 205	2. 108	. 571	. 688	1. 204	. 829	2. 538	1.451	4. 730	12.149	10.172	6. 450	18.857	13.840
4	1.70	4.913	4.81	1.687	2. 142	. 979	1. 652	2.097	2.787	4. 492	3. 538	3.751	10.497	8.075	4. 170	13.001	8.937
5	1.60	4.096	4.81	2. 169	2. 160	1.174	2. 546	2. 536	5. 522	5. 478	5. 501	2. 577	7.951	5. 539	2. 362	7.941	5.045
6	1.60	4.096	4.81	2. 651	2. 164	1.174	3. 112	2.541	8. 250	5. 499	6. 736	1. 403	4. 839	2. 998	1. 120	4. 109	2. 375
7	1.83	6.128	4.81	3. 133	2.158	. 785	2. 459	1.694	7. 704	3. 656	5. 307	. 618	2. 380	1.304	. 444	1.777	. 930
8	2. 33	12.649	4.85	3.615	2.133	. 383	1. 385	. 817	5.007	1.743	2. 953	. 235	. 995	. 487	. 146	. 629	. 301
9	3.08	29.218	4.88	4.097	2.092	. 167	. 684	. 349	2.802	. 730	1.430	. 068	. 311	. 138	. 033	. 150	. 067
10	4. 17	72.512	4.92	4. 579	2.035	. 068	. 311	. 138	1. 424	. 281	. 632	0	0	0	0	0	0
					$\Sigma=$	$\begin{aligned} & 6.544 \\ & =A \end{aligned}$	$\begin{gathered} 13.174 \\ =B \end{gathered}$	$\begin{array}{r} 12.860 \\ =C \end{array}$	$\begin{gathered} 34 . \\ =D 81 \\ =D \end{gathered}$	$\begin{gathered} 26.859 \\ =E \end{gathered}$	$\begin{gathered} \text { 28. } 0344 \\ =F \end{gathered}$						

1	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35
oint	$\begin{gathered} \mathrm{col} .16 \\ \stackrel{\text { C }}{2} \mathrm{C}_{4} \end{gathered}$	$\stackrel{\text { col. } 17}{\times C_{6}}$	$\stackrel{\mathrm{col.} .18}{\times C_{3}}$	$\begin{aligned} & \text { col. } 19 \\ & \operatorname{col} .20 \end{aligned}$	$\begin{aligned} & \mathrm{ccl} ._{21}^{21} \\ & \operatorname{col} . \\ & \hline 22 \end{aligned}$	$\begin{gathered} H= \\ \text { col. } 23 \\ \div C H \end{gathered}$	$\stackrel{\mathrm{col} .24}{\times C_{6}}$	$\stackrel{\mathrm{col} .16}{\times C_{2}}$	$\begin{gathered} \mathrm{col}_{2} 25 \\ + \\ \operatorname{col} .26 \\ - \\ \operatorname{col} .17 \end{gathered}$	$\begin{gathered} V= \\ \text { col. } 27 \\ \div C_{3} \end{gathered}$	$\stackrel{\mathrm{col} .}{ } \times \mathrm{C}_{4}$	$\stackrel{\text { col. } 16}{\times C_{7}}$	$\begin{gathered} \mathrm{col}^{2} 29 \\ + \\ \operatorname{col} .30 \\ -\quad \\ \operatorname{col} .17 \end{gathered}$	$\begin{gathered} M_{4}= \\ \text { col. } 31 \\ \vdots \\ 0.1 C_{8} \end{gathered}$	$\begin{aligned} & (\mathrm{col} .28 \\ & \times 1)- \\ & (\mathrm{col} .29 \\ & \times h)^{29} \end{aligned}$	$\begin{gathered} l- \\ (10 x \\ \text { col. } 5) \end{gathered}$	$\begin{gathered} M_{B}= \\ \text { - col. } 32 \\ \text { +col. } 33 \\ \text { - col. } 34 \end{gathered}$
0_{1}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
O_{2}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0_{3}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	137. 487	-73.344	-209. 761	210.831	1.070	. 137	-. 321	+23.371	-8. 280	. 990	. 806	30.845	+. 321	-. 77	+44.96	+45. 79	-. 06
2	105. 845	-58.628	-161.560	164.473	2.913	. 374	-. 876	+17.992	-7.928	. 948	2. 200	23.746	+. 902	-2.16	+38.18	+40.97	-. 63
3	75.813	-44.144	-115.716	119.957	4. 241	. 545	-1. 276	+12.887	-7.246	. 867	3. 206	17.009	+1.358	-3.24	$+30.84$	+36.15	-2.07
4	49.014	-30.435	-74.722	79. 449	4.727	. 607	-1.421	+8.332	-6. 097	. 728	3. 571	10. 996	+1.568	-3.75	+22.89	+31.33	-4.65
5	27. 763	-18.590	-42. 181	46. 353	4.172	. 536	-1. 255	+4.719	-4. 477	. 535	3. 1.53	6. 229	+1.441	-3.44	+15.02	+26. 51	-8.06
6	13. 164	-9.619	-19.857	22. 783	2.926	. 376	-. 880	+2.238	-2.751	. 329	2. 212	2. 953	+1.056	-2.52	+8.30	+21.69	-10.87
7	5. 219	-4. 160	-7.776	9. 379	1. 603	. 206	-. 482	+. 887	-1.372	. 164	1.212	1.171	+. 608	-1.45	+3.76	+16.87	-11.66
8	1.716	-1.472	-2.517	3. 188	. 671	. 086	-. 201	+. 292	-. 538	. 064	. 506	. 385	+. 262	-. 63	+1.36	+12.05	-10.06
9	. 388	-. 351	-. 560	. 739	. 179	. 023	-054	+. 066	-. 138	. 017	. 135	. 087	+. 072	-. 17	+. 36	+7. 23	-6. 70
10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	+2.41	-2.41

$$
\begin{array}{ll}
\quad l=48.2 \mathrm{ft} . & h=20.1 \mathrm{ft} . \\
C_{1}=\frac{C}{B}=+0.984 & C_{6}=\frac{C B}{A}-F=-2.82 \mathrm{ft} . \\
C_{2}=\frac{B}{A}=+1.998 & C_{7}=\frac{D}{B}=+2.637 \\
C_{3}=\frac{B^{2}}{A}-D=-8.361 & C_{8}=\frac{A D}{B}-B=+4.185 \\
C_{4}=\frac{D C}{B}-F=+5.883 & C_{2} C_{4}=+11.754 \\
C_{5}=\frac{F C}{B}-E=+0.716 & C_{H}=C_{3} C_{5}-C_{6} C_{4}=+7.786
\end{array}
$$

Table 11 (b).-Fixed-end moments and fixed-end thrusts, span 2

$$
\begin{array}{ll}
\quad l=32.00 \mathrm{ft.} & h=25.30 \mathrm{ft} \\
C_{1}=\frac{C}{B}=+2.113 & C_{6}=\frac{C B}{A} F=-3.20 \mathrm{ft} . \\
C_{2}=\frac{B}{A}=+1.074 & C_{7}=\frac{D}{B}=+1.649 \\
C_{3}=\frac{B^{2}}{A}-D=-5.010 & C_{8}=\frac{A D}{B}-B=+4.663 \\
C_{4}=\frac{D C}{B}-F=+7.114 & C_{2} C_{4}=+7.640 \\
C_{5}=\frac{F C}{B}-E=+2.645 & C_{H}=C_{3} C_{5}-C_{6} C_{4}=+11.442
\end{array}
$$

Table 11 (d).-Calculation of arch rib joint constants

Expression	Value, span 1	Value, span 2
Moment stilfness $=M_{1 B} \div 12=$	0. 142	0. 139
Induced thrust $=1 I_{1} \div M_{1 B}=$. 047	032
Thrust stiffness $=1 H_{2} \div 12 \mathrm{~h}=$	00690	.00037
Induced moment (at pier top) $=M_{2 B} \div H_{2}=\ldots$	7.45	12.13
Induced moment (at fonting) $=-M_{2, ~} \div H_{2}=$.	-14.0fi	-15.25
Moment carry-over $=-M_{1, A} \div M_{1 B}=\ldots \ldots$	-. 35	-. 29

Table 12.-Pier constants

$$
\begin{gathered}
l=22.5 \mathrm{ft} . \quad t=2.0 \mathrm{ft} . \\
I=t^{3} / 12=0.667
\end{gathered}
$$

Expression	Value
Moment stiffness $=4 I \div l=$	(0.119
Induced thrust $=3 \div 27=$	067
Thrust stifiness $=12 I \div l^{3}=$.00070
Induced moment $=l \div 2=$	11. 25
Moment carry-over $=$	+. 50

Table 13.-Distribution of moment and thrust stiffness

Member	Moment stifiness		Thrust stifiness	
	Value	Distribution factor	Value	Distribution factor
Arch rib, span 1	0.142	$\begin{aligned} & \text { Percent } \\ & 35 \end{aligned}$	0. 00090	Percent 45
Arch rib, span 2	. 139	35	. 000037	19
Pier	. 119	30	00070	36
Total	. 400	100	00197	100

Table 14.-Distribution of induced moments, induced thrusts, and moment carry-overs

Member	Induced moment-		Induced thrust (multiply value by distributed moments)	Moment carry-over
	At pier top (multiply value by distributed thrusts)	At footing (multiply value by distributed thrusts)		
Arch rib, span 1	+7.45	-14.06	+0.144;	$\begin{gathered} \text { Percent } \\ -35 \end{gathered}$
Arch rib, span 2.	+12. 13	-15.25	+.032	-29
Pier.	-11. 25	+11.25	-. 067	+50

Tables 15 \& 16.-Unit moment and thrust distributions, unit loads in span 1

MOMENT DISTRIBUTION FACTORS

SPAN 1 SPAN 2

Induced Thrusts

$0.046 \times$ moment (arch rib, span 1) $0.032 \times$ moment (arch rib, span 2)
$-0.067 \times$ moment (pier)

THRUST DISTRIBUTION FACTORS

Induced Moments

7.44 (-14.06 at footing) \times thrust (arch rib, span 1)
12.13 (-15.25 at footing) \times thrust (arch rib, span 2) -11.25 (-11.25 at footing) \times thrust (pier)

Table 15.-Distribution of unit moment, span 1

Footing moments

Table 16.-Distribution of unit thrust, span 1

Footing moments

Tables 17 \& 18. - Unit moment and thrust distributions, unit loads in span 2

MOMENT DISTRIBUTION FACTORS

Induced Thrusts
$+0.046 \times$ moment (arch rib, span 1) $+0.032 \times$ moment (arch rib, span 2) $-0.067 \times$ moment (pier)

THRUST DISTRIBUTION FACTORS

Indiced Moments
+7.44 (-14.06 at footing) \times thrust (arch rib, span 1) $+12.13(-15.25$ at footing $) \times$ thrust (arch rib, span 2) -11.25 (-11.25 at footing) \times thrust (pier)

Table 17.-Distribution of unit moment, span 2

Footing moments

Table 18.-Distribution of unit thrust, span 2

	Rib	Pier	Rib		Rib	Pier	5 Rib	
Fixed-end moment...-	0	0	0		0	0	-1.000	Fixed-eud thrust
	+3.348	-4.050	+2.305	\leftarrow Induced moment	+. 450	+. 360	+. 190	..-Balancing thrust
Balancing morment----	-. 561	-. 481	-. 561	Induced thrust \rightarrow	-. 026	+. 032	-. 018	
	+. 037	-. 045	+. 036	\leftarrow Induced moment	+. 005	+. 004	+.003	--Balancing thrust
Balancing moment.-.-	-. 010	-. 008	-. 010	Induced thrust \rightarrow				
inal moments .-. -- -	+2.814	-4. 584	+1.770		+. 429	+. 396	-. 825-Final thrusts

	Rib	Pier	Rib	Rib	Pier	Rib	
Sum of balancing thrusts	+0.455	$+0.364$	+0. 193	-6.397	-4.095	-2.943	. . Moment induced at footing
Sum of balancing moments...	-. 571	-. 489	-. 571	+ 200	-. 245	+. 166	.-.Moment carried over to footing
	Total moment at footing .-			-6. 197	-4.340	-2.777	

Footing moments

Table 19 (a)

Fixed-end moment $=-1.000$				
M_{B}	$M_{B^{\prime}}$	H_{1}	H_{2}	H_{3}
-0.672	+0.338	+0.013	-0.023	+0.010

Table 19 (b)

Fixed-end thrust $=+1.000$					
M_{B}	$M_{B^{\prime}}$	H_{1}	H_{2}	H_{3}	
-2.814	-1.770	+0.571	-0.396	-0.175	

Table 19 (c)

Unit load at point-	$\begin{aligned} & \text { Fixed- } \\ & \text { end } \\ & \text { moment } \end{aligned}$	$\begin{aligned} & \text { Fixed } \\ & \text { end } \\ & \text { enrust } \end{aligned}$	M and H due to fixed-end moment					M and H due to fixed-end thrust					Final values of M and H				
			M_{B}	$M_{B^{\prime}}$	H_{1}	H_{2}	H_{3}	M_{B}	$M_{B^{\prime}}$	H_{1}	H_{2}	H_{3}	M_{B}	$M_{B^{\prime}}$	H_{1}	H_{3}	H_{3}
1	-0.06	+0.137	-0.04	+0.02	+0.001	-0.001	+0.001	-0.39	-0. 24	+0.078	-0.054	-0. 024	-0.43	-0.22	$+0.079$	-0.055	-0.023
2	-. 63	+.374	-. 42	+. 21	+. 008	-. 014	+. 006	-1.05	-. 66	+. 214	$-.148$	-. 065	-1.47	-. 45	+. 222	-. 162	$-.059$
3	-2. 07	+.545	-1.39	+. 70	+. 027	-. 048	+. 021	-1.53	$-.96$	+. 311	$-.215$	$-.095$	-2.92	-. 26	$+.338$	-. 263	$-.074$
4	-4.69	+. 507	-3.15	$+1.59$	+. 061	-. 108	+. 047	-1.71	-1.07	+.347	-. 240	-. 106 ¢	-4.86	+. 52	+. 408	$-.348$	-.059
5	-8.06	+. 536	-5.42	+2.72	+. 105	-. 185	+. 081	-1.51	-. 95	+.306	-. 212	-. 094	-6.93	+1.77	+. 411	-. 397	$-.013$
6	-10.87	+. 376	-7.30	+3.67	+. 141	-. 250	+. 109	-1.06	-. 67	+. 215	-. 149	$-.066$	-8.36	+3.00	+. 356	-. 399	+. 043
7	-11.66	+. 206	-7.84	+3.94	+. 152	-. 268	+. 117	-. 58	$-.36$	+. 118	-. 082	$-.036$	-8.42	+3.58	+. 270	-.350	+.051
8	-10.06	+. 086	-6.76	+3.40	+. 131	-. 231	+. 101	-. 24	-. 15	+. 049	$-.034$	$-.015$	-7.00	+3.25	+. 180	-. 26.5	+. 086
9	-6. 70	+. 023	-4. 50	+2.26	+. 0187	-. 154	$+.067$	-. 06	-. 04	+. 013	$-.009$	$-.004$	-4.56	+2.22	+. 100	-. 16:3	+. 063
10	-2.41	0	-1.62	+. 81	+. 031	-. 0155	+. 024	0	0	0	0	0	-1.62	+.81	+. 031	-. 055	+. 024

Table 20.-Tabulation of final moments and thrusts, span 2

Table 20 (a)

Table 20 (b)

Table 20 (c)

Unit load at point-	Fixed-endmoment	Fixedend thrust	M and $I I$ due to fixed-end moment					M and $I I$ due to fixed-end thrust					Final values of M and $I I$				
			M_{B}	M_{B},	H_{1}	H_{2}	H_{3}	M_{B}	$M_{B}{ }^{\text {b }}$	H_{1}	H_{2}	H_{3}	M_{B}	$M_{B}{ }^{\prime}$	H_{1}	H_{2}	H_{3}
10^{\prime}	+1.60	0	-0. 52	+1.06	-0.1121	+0.037	-0.016	0	1	0	0	0	-0. 52	+1.06	-0.021	+0.037	-0.016
9^{\prime}	+4.58	$-.007$	-1.52	+3.103	-.060	+. 105	-. 046	+.112	+. 01	+.n63	+.113	$-.006$	-1.48	+3.04	-. 057	+. 108	-. 052
8^{\prime}	+7.16	-. 025	-2.35	+4.74	-. (i93	+. 165	-.072	+.07	+. 04	+. 011	+. 010	-. 021	-2.28	+4.78	-. 082	+. 175	-. 093
7	+8.85	$-.064$	-2.90	+5.86	-. 115	+. 20.4	-. 0×9	+. 18	+. 11	+. 027	+.025	-. 053	-2.72	+5.97	-. 088	+. 229	-. 142
6^{\prime}	+8.97	-. 131	-2.94	+5.94	-. 117	+. 206	-. 0 (0\%)	+. 37	+.23	+. 1056	+. 052	-. 108	-2.57	+6.17	-. 061	+. 758	-. 198
5^{\prime}	+7.33	-. 206	-2.40	+4.45	-. 095	+.169	-.07.3	+. 58	+. 36	+. 088	+.0¢2	-. 170	-1.82	+5.21	-. (6) 7	+. 251	$-.243$
4^{\prime}	+4.94	-. 251	-1.62	+3.27	-. 164	+. 114	-.049	+. 71	+. 44	+. 108	+. 099	-. 207	-. 91	$+3.71$	+. 044	+. 213	-. 2.56
3^{\prime}	+2. 69	-. 240	-. 88	$+1.78$	-. 035	+.062	-. 027	+. 68	+. 42	+. 103	+. 095	-. 198	-. 20	+2.20	+. Ofis	+. 157	-. 225
2^{\prime}	+1.11	-. 172	-. 36	+.73	-. 014	+. 026	-. 011	+.48	+. 30	+.074	+.065	-. 142	+. 12	$+1.13$	+.060	+. 094	-. 1:3
$1{ }^{\prime}$	$+.21$	$-.163$	-. 07	+. 14	-. 003	+. 005	-. (6)2	+. 18	+. 11	+.027	+. 025	-. 052	+. 11	+.25	$+.024$	+.030	-. 0.54

[^0]Table 21.-Tabultetion of final moments at footings, span 1
Table 21 (a)
Table 21 (1)

Table 21 (c)

Unit load point	$\begin{gathered} \text { Fixed- } \\ \text { end } \\ \text { moment } \\ \left(M_{B}\right) \end{gathered}$	Fixedend thrust	$M_{\text {A }}$	II due to fixed-end moment			M due 10 fixed-end thrust			$\begin{aligned} & \text { Final values } \\ & \text { of } M \end{aligned}$		
				M_{1}	M_{2}	M_{3}	M_{1}	M_{2}	M_{3}	$M_{1}+M_{A}$	M_{2}	M_{3}
1	-0.06	+0.137	-0.77	-0.005	+0.01	-0.005	+0.85	+0. 59	+0.38	$+0.07$	+0.60	+0.37
2	-. 63	+. 374	-2.16	-. 05	+. 12	-. 06	+2.32	+1.62	+1.04	+. 11	+1.74	+. 98
3	-2.07	+. 545	-3.24	-. 17	+. 38	-. 18	+3.38	$+2.37$	+1. 51	-. 03	+2.75	+1.33
4	-4.69	+.607	-3.75	-. 38	+. 86	-. 41	$+3.76$	+2.63	+1.69	-. 37	+3. 49	+1. 28
5	-8.06	+. 536	-3.44	-. 65	+1.48	-. 70	+3.32	+2.33	+1.49	-. 77	+3.81	+. 79
6	-10.87	+. 376	-2.52	-. 88	$+2.00$	-. 95	+2.33	+1.63	+1.04	-1.07	+3.63	+. 09
7	-11.66	+. 206	-1.45	-. 94	+2.15	-1.01	+1.28	+. 89	+. 57	-1.11	+3.04	-. 44
8	-10.06	+. 086	-. 63	-. 81	+1.85	-. 88	+. 53	+. 37	+. 24	-.91	+2.22	-. 64
9	-6. 70	+. 023	-. 17	-. 54	$+1.23$	-. 58	+. 14	+. 10	+. 06	$-.57$	+1.33	-. 52
10	-2. 41	0	0	-. 20	+. 44	-. 21	0	0	0	$-.20$	+. 44	-. 21

Table 22.-Tabulation of final moments at footings, span 2

Table 22 (a)

Fixed-end moment $=+1.000$		
M_{1}	M_{2}	M_{3}
+0.081	-0.184	+0.087

Table 22 (b)

Fixed-end thrust $=-1.000$		
M_{1}	M_{2}	M_{3}
-6.197	-4.340	-2.777

Table 22 (c)

New Publications

THE IDENTIFICATION OF ROCK TYPES

To meet popular demand a convenient ; x 9 -inch reprint has been made of the article The Identification of Rock Types, by D. O. Woolf, which appeared in Public Roads, vol. 26, No. 2, June 1950. The article presents a 'imple method for use by the highway engineer - n making field identification of the different ypes of rock with which he is concerned. It will be extremely useful to engineers, enyineering students, and others whose work requires a limited, practical knowledge of seology. The reprint is for sale by the Superintendent of Documents, U. S. Government Printing Office, Washington 25, D. C., at 10 cents a copy.

A BIBLIOGRAPIIY OF HIGHWAY PLANNING REPORTS

The Bureau of Public Roads recently published a 48-page Bibliography of Highway - Planning Reports, which is now for sale by the Superintendent of Documents, U. S. Govern-

$\left\|\begin{array}{c} \text { Unit } \\ \text { load } \\ \text { at } \\ \text { point } \end{array}\right\|$	$\begin{gathered} \text { Fixed- } \\ \text { end } \\ \text { moment } \\ \left(M_{B^{\prime}}\right) \end{gathered}$	Fixedend thrust	$\mathrm{Ma}_{4}{ }^{\prime}$	M due to fixed-end moment			M due to fixed-end thrust			Final values of M		
				M_{1}	M_{2}	M_{3}	M_{1}	M_{2}	M_{3}	M_{1}	$1 H_{2}$	$\begin{aligned} & M T_{3}+ \\ & M H_{A^{\prime}} \end{aligned}$
10^{\prime}	+1.60	0	0	+0. 13	-0.29	+0. 14	0	0	0	+0.13	-0. 29	+0.14
9^{\prime}	+458	-. 007	+. 07	+. 37	-. 84	+. 40	-. 04	-. 03	-. 02	+. 33	-. 87	+. 45
$8{ }^{\prime}$	+7.16	-. 025	+. 22	+. 58	-1.32	+. 62	-. 15	-. 11	-. 07	$+.43$	-1.43	$+.77$
7	+8.85	$-.064$	+. 55	+. 72	-1.63	+. 77	-. 40	-. 28	-. 18	+. 32	-1.91	+1.14
6^{\prime}	+8.97	-. 131	$+1.10$	+. 73	-1.65	+.78	$-.81$	-. 57	-. 36	-. 08	-2.22	$+1.52$
5^{\prime}	+7.33	-. 206	+1.69	+. 59	-1.35	+. 64	-1. 28	-. 89	-. 57	-. 69	-2.24	$+1.76$
4^{\prime}	+4.94	-. 251	+1.99	+. 40	-. 91	+. 43	-1.56	-1.09	-. 70	-1.16	-2.00	+1.72
3^{\prime}	+2. 69	-. 240	+1.85	+. 22	-. 49	+. 23	-1.49	-1.04	-. 67	-1.27	-1. 53	+1.41
2^{\prime}	+1.11	-. 172	+1.29	+. 09	-. 20	+. 10	-1.07	-. 75	-. 48	-. 98	-. 95	+. 91
1^{\prime}	+. 21	-. 063	+.46	+. 02	-. 04	+. 02	-. 40	-. 27	-. 17	-. 38	-. 31	+. 31

ment Printing Office, Washington 25, D. C., at 30 cents a copy. The bibliography covers the period 1930 to date, and includes listings of Nation-wide, State, and city highway planning reports such as those of State-wide highway planning surveys and of traffic, origin-destination, design, and highway needs studies. The reports range from long-term studies of State-wide scope to discussions and
plans for individual routes, and are the work of the Bureau of Public Roads and State, city, and consulting engineers.

The interest in highway planning continues to increase. This bibliography makes available a listing of reports on the subject, useful both to those interested in the general field of planning and to those concerned with it particular State, city, or route.

COMPARATIVE EFFECT OF HINGED AND FIXED FOOTINGS AT CRITICAL POINTS

Figure 13.-Influence line for \boldsymbol{H}_{1}.

Figure 14.-Influence line for M_{A}.

The following publications are sold by the Superintendent of Documents, Government Printing Office, Washington 25, D. C. Orders should be sent direct to the Superintendent of Documents. Prepayment is required.

ANNUAL REPORTS

(See also adjacent column)
Reports of the Chief of the Bureau of Public Roads: 1937, 10 cents. 1938, 10 cents. 1939, 10 cents.

Work of the Public Roads Administration:
$\begin{array}{lll}1940,10 \text { cents. } & 1942,10 \text { cents. } & 1948,20 \text { cents. } \\ 1941,15 \text { cents. } & 1946,20 \text { cents. } & 1949,25 \text { cents. }\end{array}$
1947, 20 cents.

HOUSE DOCUMENT NO. 462

Part 1 . . . Nonuniformity of State Motor-Vehicle Traffic Laws. 15 cents.
Part 2 . . . Skilled Investigation at the Scene of the Accident Needed to Develop Causes. 10 cents.
Part 3. . . Inadequacy of State Motor-Vehicle Accident Reporting. 10 cents.
Part 4 . . . Official Inspection of Vehicles. 10 cents.
Part 5 . . . Case Histories of Fatal Highway Accidents. 10 cents.
Part 6 . . . The Accident-Prone Driver. 10 cents.

UNIFORM VEHICLE CODE

Act I.-Uniform Motor-Vehicle Administration, Registration, Certificate of Title, and Antitheft Act. 10 cents.
Act II.-Uniform Motor-Vehicle Operators' and Chauffeurs' License Act. 10 cents.
Act III.-Uniform Motor-Vehicle Civil Liability Act. 10 cents.
Act IV.-Uniform Motor-Vehicle Safety Responsibility Act. 10 cents.
Act V.-Uniform Act Regulating Traffic on Highways. 20 cents. Model Traffic Ordinance. 15 cents.

MISCELLANEOUS PUBLICATIONS

Bibliography of Highway Planning Reports. 30 cents.
Construction of Private Driveways (No. 272MP). 10 cents.
Economic and Statistical Analysis of Highway Construction Expenditures. 15 cents.
Electrical Equipment on Movable Bridges (No. 265T). 40 cents
Federal Legislation and Regulations Relating to Highway Construction. 40 cents.
Financing of Highways by Counties and Local Rural Governments, 1931-41. 45 cents.

Guides to Traffic Safety. 10 cents.
Highway Accidents. 10 cents.
Highway Bridge Location (No. 1486D). 15 cents.
Highway Capacity Manual. 65 cents.
Highway Needs of the National Defense (House Document No. 249). 50 cents.

Highway Practice in the United States of America. 50 cents.
Highway Statistics, 1945. 35 cents.
Highway Statistics, 1946. 50 cents.
Highway Statistics, 1947. 45 cents.
Highway Statistics, 1948. 65 cents.
Highway Statistics, Summary to 1945. 40 cents.
Highways of History. 25 cents.
Identification of Rock Types. 10 cents.
Interregional Highways (House Document No. 379). 75 cents.
Legal Aspects of Controlling Highway Accesss. 15 cents.
Manual on Uniform Traffic Control Devices for Streets and Highways. 50 cents.
Principles of Highway Construction as Applied to Airports, Flight Strips, and Other Landing Areas for Aircraft. \$1.50.
Public Control of Highway Access and Roadside Development. 35 cents.
Public Land Acquisition for Bighway Purposes. 10 cents.
Roadside Improvement (No. 191MP). 10 cents.
Specifications for Construction of Roads and Bridges in National Forests and National Parks (FP-41). \$1.25.
Taxation of Motor Vehicles in 1932. 35 cents.
The Local Rural Road Problem. 20 cents.
Tire Wear and Tire Failures on Various Road Surfaces. 10 cents.
Transition Curves for Highways. $\$ 1.25$.

Single copies of the following publications are available to highway engineers and administrators for official use, and may be obtained by those so qualified upon request addressed to the Bureau of Public Roads. They are not sold by the Superintendent of Documents.

ANNUAL REPORTS

(See also adjacent column)
Public Roads Administration Annual Reports:
1943.
1944.
1945.

MISCELLANEOUS PUBLICATIONS

Bibliography on Automobile Parking in the United States. Bibliography on Highway Lighting.
Bibliography on Highway Safety.
Bibliography on Land Acquisition for Public Roads.
Bibliography on Roadside Control.
Express Highways in the United States: a Bibliography.
Indexes to Public Roads, volumes 17-19, 22, and 23.
Road Work on Farm Outlets Needs Skill and Right Equipment.

[^0]: ${ }^{1}$ Negative sign used to conform to sign convention.

